Если f (строго) возрастает на отрезке [a, b], то для любых x<y из отрезка [a, b] верно, что f(x)<f(y), в частности для любых x из отрезка [a, b] выполняется f(x)<f(b). Аналогично, если f (строго) убывает на отрезке [b, c], то для любых x>y из отрезка [a, b] верно, что f(y)>f(x), в частности для любых x из отрезка [b, c] выполняется f(b)>f(x). f(b) - наибольшее значение на отрезках [a, b] и [b, c], тогда оно наибольшее значение и на объединении отрезков.
Для минимума: если функция f убывает на отрезке [b ; c] возрастает, а на отрезке [a; b] убывает, то в точке b функция имеет минимум, причем f(b) -наименьшее значение f на отрезке [a; c]. Доказательство: Если f (строго) возрастает на отрезке [b, c], то для любых x<y из отрезка [b, c] верно, что f(y)<f(x), в частности для любых x из отрезка [a, b] выполняется f(b)<f(x). Аналогично, если f (строго) убывает на отрезке [a, b], то для любых x>y из отрезка [a, b] верно, что f (x)>f(y), в частности для любых x из отрезка [a, b] выполняется f(b)<f(x). f(b) - наименьшее значение на отрезках [a, b] и [b, c], тогда оно наименьшее значение и на объединении отрезков.
Если f (строго) возрастает на отрезке [a, b], то для любых x<y из отрезка [a, b] верно, что f(x)<f(y), в частности для любых x из отрезка [a, b] выполняется f(x)<f(b). Аналогично, если f (строго) убывает на отрезке [b, c], то для любых x>y из отрезка [a, b] верно, что f(y)>f(x), в частности для любых x из отрезка [b, c] выполняется f(b)>f(x). f(b) - наибольшее значение на отрезках [a, b] и [b, c], тогда оно наибольшее значение и на объединении отрезков.
Для минимума: если функция f убывает на отрезке [b ; c] возрастает, а на отрезке [a; b] убывает, то в точке b функция имеет минимум, причем f(b) -наименьшее значение f на отрезке [a; c]. Доказательство: Если f (строго) возрастает на отрезке [b, c], то для любых x<y из отрезка [b, c] верно, что f(y)<f(x), в частности для любых x из отрезка [a, b] выполняется f(b)<f(x). Аналогично, если f (строго) убывает на отрезке [a, b], то для любых x>y из отрезка [a, b] верно, что f (x)>f(y), в частности для любых x из отрезка [a, b] выполняется f(b)<f(x). f(b) - наименьшее значение на отрезках [a, b] и [b, c], тогда оно наименьшее значение и на объединении отрезков.
● 2x(2x-y)^2 + (2x-y)^3= 2x(4x^2-4xy+y^2)+(8x^3 - 3×4x^2×y+3×2xy^2-y^3)= 8x^3 -8x^2×y+2xy^2+8x^3-12x^2×y+6xy^2-y^3= 16x^3 - 20x^2×y + 8xy^2 - y^3