Начнем со второй системы. Она решается устно. Первое уравнение пропорционально второму с коэффициентом пропорциональности, равным 2. 24*2 = 24*х, откуда х = 2. Тогда у1 = 2, у2 = -2. ответ: (2; 2), (2; -2).
В третьей достаточно сложить оба уравнения. получим: х^2 = 1, откуда х1 = 1, тогда у1 = 5, и х2 = -1, тогда у2 = 5. ответ: (1; 5), (-1; 5)
В первой системе приравняем первое значение у ко второму, получим: 5x^2 - 9x = 5x - 9, откуда х1 = 6, тогда у1 = 21, и х2 = - 2/5, тогда у2 = -11. ответ: (6; 21), (- 2/5; - 11)
Всего существует 10 цифр : 0,1,2,3,4,5,6,7,8,9 Две цифры 1 и 2 - "заняты". Остаётся ровно 8 цифр (10-2=8).
Начинаем составлять трёхзначные цифры. Пусть место сотен займёт цифра 1 (один вариант), место десятков - цифра 2 (один вариант), тогда на место единиц можно будет поставить любую из восьми оставшихся цифр (8 вариант). Перемножаем полученные варианты получаем 1*1*8 = 8 таких чисел Учитываем, что 1 и 2 можно поменять местами и получаем 2*8=16 таких чисел.
Далее, аналогично: Пусть место сотен займёт цифра 1 (один вариант), место единиц - цифра 2 (один вариант), тогда на место десятков можно будет поставить любую из восьми оставшихся цифр (8 вариант). Перемножаем полученные варианты получаем 1*8*1= 8 таких чисел Учитываем, что 1 и 2 можно поменять местами и получаем 2*8=16 таких чисел.
Далее, Пусть место десятков займёт цифра 1 (один вариант), место единиц - цифра 2 (один вариант), тогда на место сотен можно будет поставить любую из семи оставшихся цифр - ноль нельзя ставить на место сотен (7 вариант). Перемножаем полученные варианты получаем 7*1*1 = 7 таких чисел Учитываем, что 1 и 2 можно поменять местами и получаем 2*7=14 таких чисел.
Теперь осталось сложить все полученные результаты: 16+16+14=46 чисел