М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
magamedaliev150
magamedaliev150
11.06.2021 04:58 •  Алгебра

Найдите корень уравнения (x-4)(x--2)(x+2)=-2

👇
Ответ:
VictorBo
VictorBo
11.06.2021
X^2-4x-6x+24-x^2+4+2=0
-10x+30=0
-10x=-30
x=3
4,8(89 оценок)
Ответ:
kozlovvlad21
kozlovvlad21
11.06.2021
X²-6x-4x+24-x²-4=-2
-10x+20=-2
-10x=-2-20
-10x= -22
x= -22/-10
x=2.2
4,8(43 оценок)
Открыть все ответы
Ответ:
zlatapitch1234
zlatapitch1234
11.06.2021
1) Область определения: x ∈ (-∞; ∞).
2) Четность-нечетность:
f(x) = 3x^3-15x^2+36x-5
f(-x) = 3(-x)^3-15(-x)^2-36x-5 = -3x^3-15x^2-36x-5
-f(x) = -3x^3+15x^2-36x+5
Т.к. f(x) \neq f(-x) и f(-x) \neq -f(x), то функция является функцией общего вида.
3) Точки пересечения с Ox. Решим исходное уравнение при y = 0. (метод решения: Виета-Кардано)
Получим один корень: x = 0.148 - абсцисса точки пересечения графка с осью Ox. Координаты точки: (0.148; 0)

Точка пересечения с Oy. Найдем y, подставив в уравнение x = 0. Получим: y = -5. Координаты точки: (0, -5).

4) Так как функция кубическая, то точек экстремума не имеет.

5) Первая производная.
f'(x) = 9x^2-30x+36

2. Вторая производная.
f''(x) = 18x-30
Находим корни уравнения. Для этого полученную функцию приравняем к нулю.
18x-30 = 0
Откуда точка перегиба:
x = 5/3

На промежутке: (-∞ ;5/3)
f''(x) < 0
Значит, функция выпукла.

На промежутке (5/3; ∞)
f''(x) 0
Значит, функция вогнута. 

6) \lim_{x \to \infty} 3x^3-15x^2+36x-5 = \infty
\lim_{x \to -\infty} 3x^3-15x^2+36x-5 = -\infty

7(график в приложениях)

Как мог.. Работа объемная, конечно)
Выполнить исследование функции по следующей схеме: 1)найти область определения 2)проверить четность-
4,6(51 оценок)
Ответ:
karma228cska
karma228cska
11.06.2021

\begin{equation*}\begin{cases}y+a=\frac{2x}{x+|x|}\\(x+a)^2=y+3\end{cases}\end{equation*}\Leftrightarrow\begin{equation*}\begin{cases}y=1-a\\y=(x+a)^2-3\\x0\end{cases}\end{equation*}

В первом уравнении мы раскрыли модуль: при x > 0 уравнение имеет вид y + a = 1, при x ≤ 0 оно не определено.

График первого уравнения - прямая, параллельная оси Ox, которая определена при x > 0. График второго уравнения - парабола, её вершина имеет координаты (-a; -3). При движении прямой вниз парабола сдвигается влево, а при движении прямой вверх - вправо.

Система имеет одно решение, если прямая касается параболы или парабола пересекает её один раз.

1 случай. Касание. Прямая, которая касается параболы, имеет уравнение y = -3 ⇒ 1 - a = -3 ⇔ a = 4. Но тогда вершина параболы будет иметь координату (-4; -3), а при x < 0 первое уравнение не определено. a = 4 не подходит.

2 случай. Пересечение. Если бы прямая y = 1 - a была определена в точке x = 0, то парабола имела бы одно пересечение с прямой в некой точке (0; y₁), двигалась вправо, пока её левая ветвь вновь не пересекла прямую в точке (0; y₂). Но x = 0 не входит в область определения, поэтому это лишь меняет границы полуинтервала местами (т. е. если левая граница была исключена, а правая включена, то сейчас наоборот: левая включена, правая исключена). Подставим координаты (0; y) и составим уравнение:

(0+a^2)-3=1-a\\a^2+a-4=0\\a_{1}=\frac{-1-\sqrt{17}}{2}; a_{2}=\frac{-1+\sqrt{17}}{2}

Правая граница исключается, иначе не будет пересечений, левая включается, т. к. при таком a всё ещё будет одно пересечение.

ответ: a\in[\frac{-1-\sqrt{17}}{2}; \frac{-1+\sqrt{17}}{2})

4,7(86 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ