Решение: Обозначим гипотенузу прямоугольного треугольника за (х), тогда согласно условия задачи, один из катетов равен (х-16), а другой катет равен (х-2) По Теореме Пифагора следует: с²=a²+b² где с-гипотенуза; (а) и (b) - катеты Отсюда: х²=(х-16)²+(х-2)² х²=х²-32х+256+х²-4х+4 х²-х²+32х-256-х²+4х-4=0 -х²+36х-260=0 (умножим каждый член уравнения на (-1) х²-36х+260=0 х1,2=(36+-D)/2*1 D=√(36²-4*1*260)=√(1296-1040)=√256=16 х1,2=(36+-16)/2 х1=(36+16)/2 х1=26 х2=(36-16)/2 х2=10 - не соответствует условию задачи, т.к. первый катет равен (х-16) или (10-16)=-6 - катет не может быть отрицательным числом. Найдя гипотенузу х=26, можно найти другие катеты: -первый катет равен: 26-16=10 -второй катет равен 26-2=24 Площадь прямоугольного треугольника находится по формуле: S=a*h/2 в данном случае один из катетов является высотой (h) и равен 24 S=10*24/2=10*12=120(ед.²)
ответ: Площадь прямоугольного треугольника равна 120 (ед²)
y'= 12x^2-3x
12x^2-3x=0
3x(4x-1)=0
3x=0 U 4x-1=0
x=0 U x=1/4
+0-1/4+
max. min.
Функция возрастает на промежутках: x e (- беск.;0) U (1/4;+беск.)
Убывает: x e (0;1/4)
Y(0)=0
Y(1/4)=-1/32
У наим. = -1/32 при х=1/4
У наиб.=0 при х=0