М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
optymus
optymus
10.05.2021 03:50 •  Алгебра

Известно,что углы треугольника образуют арифметическую прогрессию. найдите радиус описанной окружности, если сторона, средняя по длине, равна 4 √3.

👇
Ответ:
BearSlesher
BearSlesher
10.05.2021
<1=x-d,<2=x<<3=x+d
x-d+x+x+d=180
3x=180
x=60
R=4√3/(2sin60)=4√3:(2*√3/2)=4√3:√3=4
4,5(67 оценок)
Открыть все ответы
Ответ:
ГлебGleb39
ГлебGleb39
10.05.2021

Чокан Валиханов был чингизидом — правнуком Абылай-хана. Дед Чокана Вали-хан — один из 30 сыновей Абылай-хана. Чокан Валиханов родился в орде-зимовке Кунтимес Аманкарагайского внешнего округа (ныне аул Кунтимес в Сарыкольском районе Костанайской области). Кунтимес была постоянной зимовкой 1834—1853 гг. его отца Чингиса Валиханова[10], старшего султана Аманкарагайского (с 1845 г. Кушмурунского) округа Омской области. При рождении мальчику было дано мусульманское имя Мухаммед-Канафия. Позже придуманное его прозвище Чокан закрепилось как официальное имя. В детстве (1842—1847 гг.) мальчик учился в казахской школе, открытой в орде Кунтимес, где он получил начальные знания казахского, кыпшак-чагатайского, арабского и персидского языков.

4,5(52 оценок)
Ответ:
alsumamadaliev
alsumamadaliev
10.05.2021

абсцисса вершины параболы: m=-\dfrac{p}{2}. тогда ординату вершины параболы найдем, подставив абсциссу вершины параболы в график уравнения

y=\left(-\dfrac{p}{2}\right)^2+p\cdot \left(-\dfrac{p}{2}\right)+q=\dfrac{p^2}{4}-\dfrac{p^2}{2}+q=q-\dfrac{p^2}{4}

по условию, сумма координат вершины параболы равна 0,5. то есть

-\dfrac{p}{2}+q-\dfrac{p^2}{4}=\dfrac{1}{2}~~~\bigg|\cdot 4\\ \\ -2p+4q-p^2=2\\ \\ p^2+2p-4q+2=0

далее парабола пересекает ось ординат в точке с ординатой 0,25, то есть точка (0; 0.25) принадлежит параболе. подставим их координаты

q=\dfrac{1}{4}

p^2+2p-4\cdot \dfrac{1}{4}+2=0

p^2+2p+1=0\\ \\ (p+1)^2=0\\ \\ p=-1

отсюда абсцисса вершины параболы: m=-\dfrac{p}{2}=\dfrac{1}{2}

ответ: 0,5.

4,7(13 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ