Функция у = х² + 4х - 12
График функции - квадратная парабола веточками вверх
Найдём характерные точки этой параболы.
1) Точка пересечения с осью Оу: х = 0; у = -12;
2) точки пересечения с осью Ох: у = 0
х² + 4х - 12 = 0
D = 4² - 4 · (-12) = 64
√D = 8
x₁ = (-4 - 8)/2 = -6
x₂ = (-4 + 8) = 2
Получили две точки (-6; 0) и (2; 0)
3) найдём координаты вершины С параболы С(m; n)
m = - b/2a = -4/2 = -2
n = y(-2) = (-2)² + 4 · (-2) - 12 = -16
C(-2; -16)
По найденным точкам строим параболу (смотри прикреплённый рисунок).
По графику находим
а) у > 0 при х ∈ (-∞; -6)∪(2; +∞); y < 0 при х ∈ (-6; 2)
б) у↑ при х ∈ (-2; +∞); у↓ при х ∈ (-∞; -2)
в) у наим = у(-2) = -16; наибольшего значения не существует.
2) Чертим чертёж. Определяем пределы интегрирования, в наше случае это [0;3] (можно найти аналитически, решив уравнение:
2x-x²=-x
-x²+2x+x=0
3x-x²=0
x(3-x)=0
x=0 3-x=0
x=3
Далее по формуле площади, ограниченной линиями, вычисляем определённый интеграл
x^2)} \, dx= " alt="=( \frac{3x^2}{2}- \frac{x^3}{3})|_0^3= \frac{3*3^2}{2}- \frac{3^3}{3}-0= \frac{3*3^3-2*3^3}{2*3}= \frac{3^3(3-2)}{2*3}= \frac{3^2}{2}=4,5" />x^2)} \, dx= " /> ед².