чтобы наибольшее значение данной функции было не меньше 1, необходимо и достаточно, чтобы она в какой-то точке приняла значение 1.
если наибольшее значение функции не меньше единицы, то по непрерывности в какой-то точке будет значение единица. если же наибольшее значение меньше единицы, то значение единица приниматься не может. значит нужно найти при каких значениях a есть корни у уравнения |x - a| = x² + 1
так как x² + 1 > 0 , то уравнение равносильно совокупности :
эта совокупность имеет решение, если:
Объяснение:
ДАНО:Y(x) = x^3 -12*x² +36*x +()
ИССЛЕДОВАНИЕ.
1. Область определения D(y) = R, Х∈(-∞;+∞) - непрерывная , гладкая
2. Пересечение с осью OХ.
Разложим многочлен на множители. Y=(x-0)*(x-6)*(x-6)
Нули функции: Х₁ =0, Х₂ =6, Х₃ =6
3. Интервалы знакопостоянства.
Отрицательная - Y(x)<0 X∈(-∞;0]. Положительная -Y(x)>0 X∈[0;+∞)
4. Пересечение с осью OY. Y(0) = 0.
5. Исследование на чётность.
Y(-x) ≠ Y(x) - не чётная. Y(-x) ≠ -Y(x), Функция ни чётная, ни нечётная.
6. Первая производная. Y'(x) = 3*x² -24*x + 36 = 0
Корни Y'(x)=0. Х4=2 Х5=6
Положительная парабола - отрицательная между корнями
7. Локальные экстремумы.
Максимум Ymax(X4=2) =32. Минимум Ymin(X5=6) =0
8. Интервалы возрастания и убывания.
Возрастает Х∈(-∞;2;]U[6;+∞) , убывает - Х∈[2;6]
9. Вторая производная - Y"(x) = 6* x -24 = 0
Корень производной - точка перегиба Х₆=4
10. Выпуклая “горка» Х∈(-∞; Х₆=4]
Вогнутая – «ложка» Х∈[Х₆=4; +∞).
11. График в приложении.
Дополнительно: шаблон для описания графика.
D(y)∈(-∞;∞)
y(-x)=-x³/3+3x²+1 ни четная и ни нечетная
y`=3x²/2+6x=0
1,5x(x+4)=0
x=0 x=-4
+ _ +
(-4)(0)
возр max убыв min возр
ymax=y(-4)=-32+48+1=17
ymin=y(0)=1
y``=3x+6=0
x=-2
y(-2)=-4+12+1=9
(-2;9)-точка перегиба
_ +
(-2)
выпук вверх вогн вниз
Извини,но график не могу построить.Комп переустановили и не все программы еще есть.