ответ:Нам нужно разложить на множители выражение ac - ad - 5bc + 5bd для этого сгруппируем попарно первое со вторым и третье с четвертым слагаемые и вынесем общий множитель за скобки.
ac - ad - 5bc + 5bd = (ac - ad) - (5bc - 5bd);
Из первой скобки вынесем a, а из второй 5b, получим:
(ac - ad) - (5bc - 5bd) = a(c - d) - 5b(c - d).
Рассмотрим полученное выражение. В результате мы получили разность двух выражений каждое из которых содержит скобку (c - d), вынесем ее как общий множитель.
a(c - d) - 5b(c - d) = (с - d)(a - 5b).
ответ: (с - d)(a - 5b).
Объяснение:
ответ:1) Задание
Дана функция
найти промежутки возрастания и убывания
По признаку возрастания и убывания функции на интервале:
если производная функции y=f(x) положительна для любого x из интервала X, то функция возрастает на X;
если производная функции y=f(x) отрицательна для любого x из интервала X, то функция убывает на X.
Найдем производную данной функции
найдем точки экстремума, точки в которых производная равна нулю
отметим точки на числовой прямой и проверим знак производной на промежутках
___+-+__
0 2
Значит на промежутках (-оо;0) ∪ (2;+оо) функция возрастает
на промежутке (0;2) функция убывает
точки х=0 точка минимума, х=2 точка максимума
Найти наибольшее и наименьшее значение функции на отрезке [-2; 1].
Заметим, что х=2 точка максимума не входит в данный промежуток,
а х=0 принадлежит данному промежутку
Проверим значение функции в точке х=0 и на концах отрезка
Значит наибольшее значение функции на отрезке [-2;1]
в точке х=0 и у(0)=1
значит наименьшее значение функции на отрезке [-2;1]
в точке х=-2 и у(-2)= -19
2. Напишите уравнение к касательной к графику функции
f(x)=x^3-3x^2+2x+4 в точке с абсциссой x0=1.
Уравнение касательной имеет вид
найдем производную данной функции
найдем значение функции и производной в точке х=1
подставим значения в уравнение касательной
Объяснение:
ОДЗ: 2x+3≥0 2x≥-3 x≥-1,5 x-1≥0 x≥1 ⇒
-∞-31+∞
ответ: х∈[1;+∞].