P(ABCD)=20(см); S(ABCD)=24(см^2); Пусть меньшая сторона - а, большая - b. Имеем: P(ABCD)=2a+2b; S(ABCD)=a*b; То есть 2a+2b=20 a*b=24. Для удобства и понимания обозначим а - х, b - y. Решаем полученную систему уравнений
{2x+2y=20, | : 2 x*y=24; {х+у=10 (доделили на 2); ху=24; Из первого уравнения имеем: х+у=10 <=> у=10-х. Подставляем значение у во второе уравнение. Получим: х*у=24 <=> х*(10-х)=24 <=> 10х-х^2=24 <=> -х^2+10х-24=0 | * (-1) (домножили на -1) <=> х^2-10х+24=0; D=(-10)^2-4*24=100-96=4; х1,2=10+-2/2; х1=6 х2=4. Отсюда: 1) х+у=10 <=> 6+у=10 <=> у=4; 2) х+у=10 <=> 4+у=10 <=> у=6. Возвращаемся к сторонам: а=х=6; а=4; b=6; b=4. Итак у нас есть две стороны: 6 см. и 4 см. (либо большая 6, либо наоборот, неважно). ответ: 6 и 4.
Если А и В лежат по одну сторону от прямой, то расстояние от середины отрезка до прямой равно полусумме расстояний от концов отрезка до этой прямой. Если лежат по разные стороны от прямой, то полуразности этих расстояний. (12-4)/2 = 4 см.
На промежутке [-2π/3;0] функция cosx возрастает, а у=-2xcosx - убывает. Числа 19 -18/π -постоянные, они не влияют на поведение функции. Наибольшее значение при х = -2π/3. Оно равно 19-2*cos(-2π/3)-18/π = 19-2*(-1/2) -18/π = 20-18/π. Это в том случае, если косинус х.( без скобок).
Пусть х- объем первого танкера, у- объем второго танкера, z- производительность насоса (работа за час). 3 насоса могут наполнить второй танкер за у/3z часов Т.к. четыре одинаковых насоса, работая вместе, наполнили нефтью первый танкер и треть второго танкера за 11 часов, то можем составить первое уравнение 4z*11=х+1/3у, или 44z=х+1/3у. Т.к. 3 насоса наполнили бы первый танкер, а затем один из них наполнил бы четверть второго танкера за 18ч, получаем второе уравнение х/3z+у/4z=18, или (умножим на 3z) х+3у/4=54z. Выразим и приравняем х: 44z-1/3*y=54z-3/4*y. приведем подобные 5/12*у=10z, умножаем на 4/5z, у/3z=8 ответ: 8 часов