М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
matveeva17vay
matveeva17vay
29.09.2022 18:03 •  Алгебра

5^x+7^x=12^x сколько корней уравнения

👇
Ответ:
Егор4002
Егор4002
29.09.2022
Перепишем уравнение в виде \frac{5}{12}( \frac{5}{12} )^{x-1} + \frac{7}{12}( \frac{7}{12} )^{x-1}=1.
1) При x>1 имеем (5/12)^(x-1)<1 и (7/12)^(x-1)<1 (т.к. 5/12<1 и 7/12<1 и возводятся  в положительную степень)  поэтому левая часть уравнения строго меньше 5/12+7/12, т.е. меньше правой части, значит при x>1 решений нет.
2) При x<1, аналогично (5/12)^(x-1)>1 и (7/12)^(x-1)>1 т.к. положительные числа меньшие 1 возводятся в отрицательную степень. Значит левая часть строго больше 7/12+5/12, т.е. тоже нет решений.
3) при х=1 очевидное решение.
ответ: 1 корень, х=1.
4,5(30 оценок)
Ответ:
Лина230502
Лина230502
29.09.2022
5^x+7^x=12^x
Разделим обе части на 12^x
(5/12)^x+(7/12)^x=1
Проанализируем функцию f(x)=(5/12)^x+(7/12)^x.
f'(x)=ln(5/12)*(5/12)^x+ln(7/12)*(7/12)^x < 0 при любых действительных x. Это значит, функция постоянно убывает и пересекает прямую y=a ровно единожды. Таким образом, путем подбора определяем корень уравнения x=1 и говорим, что он единственный, судя по рассуждениям, приведенным выше.
ответ: 1 корень.
4,7(89 оценок)
Открыть все ответы
Ответ:
berezinaanna199
berezinaanna199
29.09.2022

1) <--> Б)

2) <--> В)

3) <--> А)

Объяснение:

Можно использовать следующее свойство неравенств с модулем:

Неравенство  |x+a|<b равносильно двойному неравенству –b<x+a<b.

1) |x|<10 ⇔ –10<x<10, то есть |x|<10 неравенство соответствует Б);

2) |x+5|<3 ⇔ –3<x+5<3 ⇔ –3–5<x<3–5 ⇔ –8<x<–2, то есть |x+5|<3 неравенство соответствует В);

3) |x–10|<6 ⇔ –6<x–10<6 ⇔ –6+10<x<6+10 ⇔ 4<x<16, то есть |x|<10 неравенство соответствует А).

4,6(52 оценок)
Ответ:
Lunitoes
Lunitoes
29.09.2022
Дана функция y = x³ - 7x² + 15x - 22.
Производная равна:
y' = 3x² - 14x + 15.
Приравниваем её нулю:
3x² - 14x + 15 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=(-14)^2-4*3*15=196-4*3*15=196-12*15=196-180=16;Дискриминант больше 0, уравнение имеет 2 корня:
x_1 = (√16-(-14))/(2*3) = (4-(-14))/(2*3) = (4+14)/(2*3) = 18/(2*3) = 18/6 = 3;x_2 = (-√16-(-14))/(2*3) = (-4-(-14))/(2*3) = (-4+14)/(2*3) = 10/(2*3) = 10/6 = 5/3 ≈ 1.666667.
Имеем 2 критические точки и 3 промежутка.
На промежутках находят знаки производной. Где производная положительна - функция возрастает, где отрицательна - там убывает. Точки, в которых происходит смена знака и есть точки экстремума - где производная с плюса меняется на минус - точка максимума, а где с минуса на плюс - точки минимума.
x =     0       1,666667           2             3               4
y' =    15            0                -1             0               7.
Отсюда выводы:
 - функция возрастает на промежутках (-∞; (2/3) и (3; +∞),
 - функция убывает на промежутке ((2/3); 3),
 - максимум в точке х =(2/3),
 - минимум в точке х = 3,
Найдите точку максимума функции y=x^3-7x^2+15x-22
4,7(66 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ