log(6) (108 - 36x) > log (6) (x^2 - 11x + 24) + log (6) (x+4)
log(a) b ОДЗ a>0 b>0 a≠1
итак ищем ОДЗ тело логарифма больше 0
1. 108 - 36x > 0 x < 3
2. x^2 - 11x + 24 > 0
D = 121 - 96 = 25
x12=(11+-5)/2=8 3
(х - 3)(х - 8) > 0
x∈ (-∞ 3) U (8 +∞)
3. x + 4 > 0 x > -4
ОДЗ x∈(-4 3)
log(6) (108 - 36x) > log (6) (x^2 - 11x + 24)*(x+4)
так как основание логарифма больше 1, знак не меняется
108 - 36x > (x - 3)(x - 8)(x + 4)
36(3 - х) > (x - 3)(x - 8)(x + 4)
36(х - 3) + (x - 3)(x - 8)(x + 4) < 0
(x - 3)(x² - 4x - 32 + 36) < 0
(x - 3)(x² - 4x + 4) < 0
(x - 2)²(x - 3) < 0
применяем метод интервалов
(2)(3)
x ∈(-∞ 2) U (2 3) пересекаем с ОДЗ x∈(-4 3)
ответ x∈(-4 2) U (2 3)
a²-b²=(a-b)(a+b)
16-24y+9y²=4²-2*4*3y+3²y²=(4-3y)²=(4-3y)(4-3y)
3x²-30x+75=3(x²-10x+25)=3(x²-2*x*5+5²)=3(x-5)²=3(x-5)(x-5)
15xy²+5xy-20x²y=5xy(3y+1-4x)
3a²-3b²-a+b=3(a²-b²)-(a-b)=3(a-b)(a+b)-(a-b)=(a-b)(3(a+b)-1)=(a-b)(3a+3b-1)