1) скорость течения реки Vр = 2.4 км/ч.
2) 65 вопросов.
Объяснение:
1. v1 = v2; t=2 часа.
Путь S=vt.
По течению S1=2(v1+vp);
Против течения S=2(v2-vp).
v1=v2=v. S1-S2=9.6 км.
2(v+vp)-2(v-vp)=9.6;
2v+2vp-2v+2vp=9.6;
4vp=9.6 ;
vp=9.6:4;
vp= 2.4 км/ч.
***
2. Петя - за 60 мин - 13 вопросов;
Ваня за 60 мин - 15 вопросов
Скорость ответов Пети равна 13/60;
Скорость ответов Вани равна 15/60.
Обозначим количество вопросов теста через х.
Тогда Петя затратил на ответы х/(13/60) минут;
а Ваня затратил - х/(15/60) минут;
Разность во времени ответов равна 40 минут.
х/(13/60)-х/(15/60)=40;
60x/13-60х/15=40; (Наименьший общий знаменатель равен 13*15=195 ).
Дополнительные множители 15, 13 и 195;
900х - 780х =7800;
120х=7800;
х=7800/120;
х=65.
примерно 40 а если быть точным то 39,9и тд
Объяснение:
тоесть мы смотри давай решать первое выражение у нас получается 8 в 8 степени и 3 в восьмой степени сейчас мы оставим это в такой же форме и переходим к следущему выражение выходит то что сокращаем получяется одна вторая в шестой степени 2 в степени это 64 выходит то что 8 в 8степени поделеный на 3 в 8 степени и то умноженое на 1 поделенный на 64 мы можем скоратить восьмерки и получается 8 в шестой степени поделенное на 3 в восьмой степени надеюсь желаю удачи
Число исходов n такого испытания равно
C⁸₁₂.
Так как С⁸₁₂=С⁴₁₂ по свойству сочетаний, то произвольный выбор 8-ми человек для отпуска равен тому, что произвольно остаются 4 специалиста для работы.
n=С⁸₁₂=С⁴₁₂ =12!/(8!·(12-8)!)=12!/(8!·4!)=9·10·11·12/(1·2·3·4)=9·55=495.
Событие A состоит в том, что из оставшихся четырех специалистов должен быть хотя бы один каждого профиля, или два.
Выбор трех специалистов одного профиля невозможен, так как исключает выбор кого -то одного из третьего профиля.
Итак, можно выбрать
программисты 2 1 1
инженеры 1 или 2 или 1
тестировшики 1 1 2
Это можно сделать С²₄·С¹₅·С₃¹+С¹₄·С²₅·С¹₃+С¹₄·С¹₅·С²₃=
m=270
p(A)=m/n=270/495=6/11