Наклонной асимптотой и касательной является прямая вида: у=kх+b, где k-угловой коэффициент прямой. Геометрический смысл производной: k=tgα=f '(x₀) чтобы прямые были параллельными, необходимо и достаточно, чтобы соответственные углы были равны, то есть: α=β ⇒ tgα=tgβ ⇒ k₁=k₂
если функция задаётся дробью в которой в числителе и знаменателе стоят многочлены, то наклонную асимптоту можно найти делением числителя на знаменатель столбиком и то что получится в частном и будет наклонная асимптота (см.фото 1) у=kx+b y=x+2 ⇒ k₁=1 или в общем виде найти через предел (см. фото 2)
Итак, k₁=k₂=1, следовательно данные наклонная асимптота и касательная параллельны - ч.т.д
F(x) = 1,3x - 3,9 1) выясним сначала при каких значениях аргумента f(x)=0, т.е. 1,3x - 3,9 = 0 1,3x = 3,9 | : 1,3 x = 32) при каких значениях аргумента f(x) < 0 ? 1,3x - 3,9 < 0 x < 3 3) при каких значениях аргумента f(x) > 0 ? 1,3x - 3,9 > 0 x > 3 т.к. угловой коэффициент (это коэффициент при х) данной линейной функции положителен , значит функция возрастающая. ответ: f(x)=0 при x = 3; f(x) < 0 при x < 3; f(x) > 0 при x > 3; функция возрастающая.
у=kх+b, где k-угловой коэффициент прямой.
Геометрический смысл производной:
k=tgα=f '(x₀)
чтобы прямые были параллельными, необходимо и достаточно, чтобы соответственные углы были равны, то есть:
α=β ⇒ tgα=tgβ ⇒ k₁=k₂
если функция задаётся дробью в которой в числителе и знаменателе стоят многочлены, то наклонную асимптоту можно найти делением числителя на знаменатель столбиком и то что получится в частном и будет наклонная асимптота (см.фото 1) у=kx+b
y=x+2 ⇒ k₁=1
или в общем виде найти через предел (см. фото 2)
Итак, k₁=k₂=1, следовательно данные наклонная асимптота и касательная параллельны - ч.т.д