30% = 30/100 = 3/10
Пусть всего на трёх участках растёт х кустов малины, тогда на первом участке растёт (7/16)х кустов, на втором (3/10)х кустов, а на третьем (3/10)х - 9 кустов
Уравнение: х = (7/16)х + (3/10)х + (3/10)х - 9
х - (35/80)х - (24/80)х - (24/80)х = - 9
х - (83/80)х = - 9
(-3/80)х = - 9
х = - 9 : (-3/80)
х = 9 · 80/3
х = 3 · 80
х = 240
ответ: 240 кустов малины растёт на трёх участках.
30% = 30/100 = 3/10
Пусть всего на трёх участках растёт х кустов малины, тогда на первом участке растёт (7/16)х кустов, на втором (3/10)х кустов, а на третьем (3/10)х - 9 кустов
Уравнение: х = (7/16)х + (3/10)х + (3/10)х - 9
х - (35/80)х - (24/80)х - (24/80)х = - 9
х - (83/80)х = - 9
(-3/80)х = - 9
х = - 9 : (-3/80)
х = 9 · 80/3
х = 3 · 80
х = 240
ответ: 240 кустов малины растёт на трёх участках.
Пусть α=arcsin(-3/5), тогда sin α=-3/5 и нужно найти -tg α
arcsin x∈[-π/2;π/2]. Т.к. sin α<0, то α∈[-π/2;0] (IV четверть)
Для нахождения тангенса этого угла нужно найти косинус.
сos α=√(1-sin²α)=√(1-9/25)=4/5 (косинус в 4ой четверти положителен)
tg α=sin α/cos α=(-3/5)/(4/5)=-3/4. Отсюда следует, что -tg α=3/4
ОТВЕТ: 3) 3/4
sin(2arccos12/13)=2sin(arccos 12/13)*cos(arccos(12/13) (формула синуса двойного угла)
Пусть α=arccos12/13, тогда cos α=12/13 и нужно найти 2sinα*cosα
arccos x∈[0;π]. Т.к. cos α>0, то α∈[0;π/2] (I четверть)
sinα=√(1-cos²α)=√(1-144/169)=5/13 (синус в первой четверти положителен)
2*sinα*cosα=2*5/13*12/13=120/169
ОТВЕТ: 4) 120/169