ответ: x1=(5+√5)/2, y1=(5-√5)/2; x2=(5-√5)/2, y2=(5+√5)/2; x3=(-5+√5)/2, y3=(-5-√5)/2; x4=(-5-√5)/2, y4=-5-x4=(-5+√5)/2.
Объяснение:
Умножая первое уравнение на 2, находим 2*xy=10. Прибавляя это выражение ко второму уравнению, получаем x²+2*x*y+y²=(x+y)²=25. Отсюда x+y=5 либо x+y=-5, и мы получаем две системы:
x*y=5
x+y=5
и
x*y=5
x+y=-5.
Решим первую систему. Из второго уравнения находим y=5-x. Подставляя это выражение в первое уравнение, получаем: x*(5-x)=5, или x²-5*x+5=0. Оно имеет корни x1= и x2=(5-√5)/2. Отсюда y1=5-x1=(5-√5)/2 и y2=5-x2=(5+√5)/2.
Решим вторую систему. Из второго уравнения находим y=-5-x. Подставляя это выражение в первое уравнение, получаем: x*(5+x)=-5, или x²+5*x+5=0. Оно имеет корни x3=(-5+√5)/2 и x4=(-5-√5)/2. Отсюда y3=-5-x3=(-5-√5)/2 и y4=-5-x4=(-5+√5)/2.
10. Если обе части неравенства умножить на одно и то же положительное число, то знак неравенства не изменится
Если обе части неравенства умножить на одно и то же отрицательное число, то знак неравенства изменится на противоположный
11. При сложении неравенств одинакового знака получается неравенство того же знака: если a>b и с>d, то a+c>b+d
12. Неравенства, содержащие знак ≥ или знак ≤, называют нестрогим
13. Решить неравенство с одним неизвестным это значит найти все его решения или доказать, что решений нет
14. Решением системы неравенств с одним неизвестным называется то значение неизвестного, при котором верно каждое из неравенств системы
15. Если a <b, то множество чисел х, удовлетворяющих неравенствам а < x < b, называется интервалом и обозначается (а;b)
16. Модуль положительного числа равен самому числу
17*. Если a < 0, то "a - |a| < 0"
решение представлено на фото
Объяснение: