0 " class="latex-formula" id="TexFormula4" src="https://tex.z-dn.net/?f=f%27%28x%29%3E0%20" title="f'(x)>0 "> при x∈(-≈;)U(;+≈) Следовательно, функция возрастает на промежутке от минус бесконечности до достигая в этой точке локального максимума, затем убывает до локального минимума в точке , затем снова возрастает. => Следовательно функция является выпуклой на интервале от минус бесконечности до 0, и вогнутой, соответственно, от 0 до плюс бесконечности График выглядит, примерно, так.Посчитай пять точек для подгонки к координатам: x∈{-2;-1;0;1;2}
Б - заменить на значек бесконечности (восьмерка горизонтально).
А) D(f)=(-Б;+Б). Прямая. В точке (0;0) пересекает ось абсцисс (х) и ось ординат (у). Возрастает т.к. k > 0. Не имеет ограничений. Не четная. Область значений - E(f)=(-Б;+Б).
Б) D(f)=(-Б;+Б). Прямая. В точке (0;3) пересекает ось х. В точке (-1.5;0) пересек. ось у. Возрастает т.к. k > 0. Не имеет ограничений. Не четная. Область значений - E(f)=(-Б;+Б).
В) D(f)=(-Б;+Б). Прямая. В точке (0;1) пересекает ось х. В точке (-0.2;0) пересек. ось у. Убывает т.к. k < 0. Не имеет ограничений. Не четная. Область значений - E(f)=(-Б;+Б).
Г) D(f)=(-Б;+Б). Прямая. В точке (0;-2) пересек. ось у. Убывает т.к. k < 0. Ни четная и ни не четная. Область значений - E(f)=-2
x+2y=0
2x+y=5
x=-2y
2(-2y)+y=5
x=-2y
-4y+y=5, -3y=5, y=-5/3
x=-2(-5/3), x=10/3
/x,y/=/10/3, -5/3/
2)7x+y=20
x-5y=8
7x+y=20
x=8+5y
7(8+5y)+y=20, 56+36y=20,36y=20-56,36y=-36, y=-1
x=8+5(-1),x=8-5, x=3
/x,y/=/3,-1/