М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
svo20030227
svo20030227
17.01.2022 20:13 •  Алгебра

Решите : 1) 5x+ 2x+3/4 = 3x-1 +4x; 2)x^2+5x+1=0; 3) 2x-5/3 - 1> 3-x

👇
Ответ:
bbarcachempion
bbarcachempion
17.01.2022
1) 5x+ 2x+3/4 = 3x-1 +4x
7x+3/4=7x-1
7x-7x=-1-3/4
0=-1 3/4  уравнение не имеет решений
2)x^2+5x+1=0
D=25-4=21
x₁=(-5-√21)/2
x₂=(-5+√21)/2
 3) 2x-5/3 - 1> 3-x
2x+x>3+1+5/3
3x>4  5/3
3x> 17/3
x>17/9
x∈(17/9; +∞)
4,5(5 оценок)
Открыть все ответы
Ответ:
chapllinshow
chapllinshow
17.01.2022

Пусть х - число десятков , а у - число единиц в возрасте мужчины. Его возраст (10х + у), а возраст его сына равен (х + у).

Составляем уравнение: (10х + у) + (х + у) = 67

9х + 2(х + у) = 67

х + у = 0,5(67 - 9х)  -возраст сына.

Наложим ограничения:

1) х<10

2) х -не должно быть чётным числом, иначе х + у  будет нецелым

3) у<10.

Из х + у = 0,5(67 - 9х) получим

у = 0,5(67 - 9х) - х = 0,5((67 - 9х - 2х) = 0,5((67 - 11х)

решим неравенство

0,5((67 - 11х) < 10

67 - 11х < 20

11х > 47

х > 4,27, 

С учётом того, что х -целое положительное число, имеем

х > 4

4) х+ у > х - это очевидно, поэтому справедливо неравенство 0,5(67 - 9х) > х

67 - 9х > 2х

11х < 67

х < 6,09

т.е.

х < 6

В границах х∈(4;6) есть только одноцелое число х = 5.

Тогда у = 0,5((67 - 11·5) =  6

И возраст сына х + у = 5 + 6 = 11

Ну, и заодно: возраст отца 56 лет

ответ: сыну 11 лет

4,4(15 оценок)
Ответ:

Довольно интересная задача, которая наверняка имеет множество решений, постараюсь поподробнее изложить своё.

Итак, возраст отца определяется двузначным числом a1a0, где a1 и a0 - цифры данного числа.

Представим данное число в виде разложения на слагаемые, по формуле перевода чисел в десятичную систему счисления:

a1a0 = a0 * 10^0 + a1 * 10^1 = a0 + 10a1.

Суммарный возраст отца и сына равен 67, запишем это в виде уравнения с двумя неизвестными:

a0 + a1 + a0 + 10a1 = 67

2a0 + 11a1 = 67, мы получили диофантово уравнение, которое требуется решить в натуральных числах, так как возраст - величина положительная.

Решим с использованием следующей системы неравенств:

\left \{ {{67 - 11a1 0} \atop {67 - 2a0 0}} \right.

Решая получаем, что a1 < 6, а a0 < 33.

Интервал значений a0 слишком велик, поэтому будет отталкиваться от значений a1.

Теперь дело остаётся за банальным перебором:

Если a1 = 1, то возраст отца равен 128, что невозможно.

Если a1 = 2, то уравнение 2a0 + 11a1 = 67 в решении не нуждается, так как при подстановке получим, что сумма чётных чисел равна числу нечётному, что невозможно. Впредь будем рассматривать только те значения a1, которые не кратны двум.

Если a1 = 3, то возраст отца равен 317, что невозможно.

Значение 4 кратно 2, а значит заранее не подходит.

В итоге мы пришли к единственному оставшемуся значению - это 5, оно и будет решением данного уравнения, проверим это.

2a0 + 55 = 67

2a0 = 12

a0 = 6

Возраст отца равен 56, тогда возраст сына - 11.

Искомый ответ: 11.

 

4,7(81 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ