1. а)= а² - 6а - 3а - 18= а² - 9а - 18
б)= b³ + 3b² - 8b - 2b² - 6b + 16 =b³ + b² - 14b + 16
в)= 30х² + 20ху - 6ху + 4у² = 30х² + 14ху + 4у²
2. а)= (с+6) (d-5)
б)= b (x-y) + 4 (x-y) = (b+4) (x-y)
3. = c³ + 3c²d + cd² + 3d³ - 3c²d + cd²= c³ + 2cd² + 3d³
4. (y - 5) (y +7) = у(у+2) - 35
у² + 7у - 5у - 35 = у² + 2у - 35
у² + 2у -35 = у² + 2у - 35
0=0 ч.т.д
5. пусть длинна будет х см. тогда ширина у см.
составим систему
х - 6 = у
(х+5) (у +2) = 110 +ху
х - 6= у
(х+5) (х-6+2)=110+х(х-6)
х-6=у
х² - 4х + 5х - 20 = 110+х²-6х
х-6=у
х²-4х+5х-х²+6х = 110+20
х-6=у
7х=130
х=19
у=13
ответ: ширина 13 см. длинна 19 см
Пусть x - сумма всех учеников в первой группе до перехода, а y - количество учеников в этой группе. Тогда:
x/y = 22
Пусть k - сумма всех учеников во второй группе до перехода, а l - количество учеников в этой группе. Тогда:
k/l = 45
Известно, что при переходе ученика из второй группы в первую, средний у обоих групп повысился на 1, то есть:
(x+n)/(y+1)=23
(k-n)/(l-1)=46
Где n - количество ученика, который перешёл из второй группы в первую. Выразим n в обеих формулах:
n = 23(y+1)-x
n = -46(l-1)+k
Приравняем правые части этих уравнений:
23(y+1)-x = -46(l-1)+k
23y+23-x = k-46l+46
x и k мы можем выразить из двух первых формул, то есть:
x = 22y
k = 45l
Подставим правые части данных уравнений в уравнение выше:
23y+23-x = k-46l+46
23y+23-22y = 45l-46l+46
y+23 = 46-l
y+l = 46-23
y+l = 23
Поскольку y - количество учеников в первой группе, а l - количество учеников во второй группе, то y + l = 23 ученика в обеих группах.
23 ученика в обеих группах
корень из 7 в 4 степени = 49