1) Закон перемены знаков. значение дроби не изменится если изменить знаки на противоположные: ▪у числителя и знаменателя дроби ▪у числителя и у всей дроби ▪у знаменателя и у всей дроби
2) функция обратной пропорциональности -это функция заданная формулой: ▪у = к/х ▪где х - независимая переменная, а ▪к - число отличное от нуля. Графиком обратной пропорциональности является гиппербола. ▪Свойства функции обратной пропорциональности: 1) область определения о.п. состоит из всех значений х, кроме 0. 2) область значений о.п. - все значения у, кроме 0. 3) функция обратной пропорциональности не имеет 0. 4) при к>0 ветви гипперболы расположены в 1 и3 координатных четвертях. 5) при к<0 ветви гипперболы расположены в 2 и4 координатных четвертях.
3) ▪Действительными числами называют рациональные и иррациональные числа вместе . Множество действительных чисел образуют положительные, отрицательные, рациональные и иррациональные числа. Множество всех действительных чисел обозначают буквой R. ▪Рациональные числа - это все числа, которые могут быть представлены в виде обыкновенной дроби. Множество рациональных чисел обозначают буквой Q. ▪Иррациональные числа - это числа которые не являются рациональными числами, т.е. которые нельзя представить в виде дроби. Иррациональное число может быть представленно ввиде бесконечной непериодической десятичной дроби.
2)(5-3a)(5+3a)
3)(6m-10n)(6m+10n)
4)(0,2p-1,3q)(0,2p+1,3q)
5)(xy-2/3)(xy+2/3)
6)(a^2-b^3)(a^2+b^3)