М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Karamy33
Karamy33
07.07.2020 19:23 •  Алгебра

Задана система неравенств \left \{ {\bigg{5-5x\ \textgreater \ 11, \ \ \ \ \ \ \ \ \ \ \ } \atop \bigg{\dfrac{(2a-1)(3x+5)}{(a-1)(4a+5)}\ \textgreater \ 1, }} \right. где x – переменная, a – постоянная.
1. решите первое неравенство этой системы.
2. определите множество решений второго неравенства в зависимости от значений a.
3. определите все решения системы в зависимости от значений a.

👇
Ответ:

1. Решим первое неравенство этой системы:

5 - 5x 11

-5x 11 - 5

-5x 6

x < -\dfrac{6}{5}

ответ: x \in \bigg(-\infty; -\dfrac{6}{5} \bigg)

2. Дробь \dfrac{(2a-1)(3x+5)}{(a-1)(4a+5)} существует, если

(a-1)(4a+5) \neq 0\\ \\\left[\begin{array}{ccc}a-1\neq0 \ \\4a+5\neq0 \\ \end{array}\right \ \ \ \ \ \ \ \left[\begin{array}{ccc}a\neq1 \ \ \ \\ a\neq -\dfrac{5}{4} \\ \end{array}\right

Перед тем как выражать x, нужно рассмотреть случаи, когда дробь \dfrac{(2a-1)}{(a-1)(4a+5)} положительная, а когда отрицательная:

Если такая дробь положительная, то при нахождении переменной x знак неравенства меняться не будет (так как делим (умножаем) на положительное число):

\dfrac{2a-1}{(a-1)(4a+5)} 0

Решим неравенство методом интервалов.

а) ОДЗ: a\neq 1; \ a\neq -\dfrac{5}{4}

б) Нуль неравенства: 2a-1 \neq 0; \ a \neq \dfrac{1}{2}

в) Решением данного неравенства будет a \in \bigg(-\dfrac{5}{4}; \dfrac{1}{2} \bigg) \cup (1; +\infty ).

При таких значениях параметра a знак неравенства меняться не будет:

\dfrac{(2a-1)(3x+5)}{(a-1)(4a+5)} 1 \ \ \ \ \bigg| : \dfrac{2a-1}{(a-1)(4a+5)}

3x+5 \dfrac{(a-1)(4a+5)}{2a-1}

3x \dfrac{(a-1)(4a+5)}{2a-1} - 5

3x \dfrac{4a^{2} + 5a - 4a - 5 - 5(2a-1)}{2a-1}

3x \dfrac{4a^{2} + a - 5 - 10a + 4}{2a - 1}

3x \dfrac{4a^{2} - 9a}{2a-1} \ \ \ \ \ \ | : 3

x \dfrac{a(4a-9)}{3(2a - 1)}

Если такая дробь отрицательная, то при нахождении переменной x знак неравенства измениться на противоположный (так как делим (умножаем) на отрицательное число):

\dfrac{2a-1}{(a-1)(4a+5)} < 0

Решим неравенство методом интервалов. Решением данного неравенства будет a \in \bigg(-\infty; -\dfrac{5}{4}; \bigg) \cup \bigg(\dfrac{1}{2} ; 1 \bigg).

При таких значениях параметра a знак неравенства изменится:

\dfrac{(2a-1)(3x+5)}{(a-1)(4a+5)} 1 \ \ \ \ \bigg| : \dfrac{2a-1}{(a-1)(4a+5)}

3x+5 < \dfrac{(a-1)(4a+5)}{2a-1}

x < \dfrac{a(4a-9)}{3(2a - 1)}

ответ: если a \in \bigg(-\infty; -\dfrac{5}{4}; \bigg) \cup \bigg(\dfrac{1}{2} ; 1 \bigg), то x \in \bigg (-\infty; \dfrac{a(4a-9)}{3(2a - 1)} \bigg); если a \in \bigg(-\dfrac{5}{4}; \dfrac{1}{2} \bigg) \cup (1; +\infty ), то x \in \bigg (\dfrac{a(4a-9)}{3(2a - 1)}; + \infty \bigg); если a = -\dfrac{5}{4} и a = 1, то неравенство не имеет решений.

3. Данная система неравенств решается в зависимости от значений параметра a, поэтому:

1) Рассмотрим случай, когда решение неравенств пересекается:

Если \dfrac{a(4a-9)}{3(2a - 1)} < -\dfrac{6}{5}, то есть a \in \bigg(-\infty; -\dfrac{3}{4} \bigg) \cup \bigg(\dfrac{1}{2}; \dfrac{6}{5}\bigg), то в объединении с a \in \bigg(-\dfrac{5}{4}; \dfrac{1}{2} \bigg) \cup (1; +\infty ) получаем a \in \bigg(-\dfrac{5}{4}; - \dfrac{3}{4}\bigg) \cup \bigg(1; \dfrac{6}{5} \bigg)x < \dfrac{a(4a-9)}{3(2a - 1)} при a \in \bigg(-\infty; -\dfrac{5}{4}; \bigg) \cup \bigg(\dfrac{1}{2} ; 1 \bigg)Если \dfrac{a(4a-9)}{3(2a - 1)} -\dfrac{6}{5}, то есть a \in \bigg(-\dfrac{3}{4}; \dfrac{1}{2} \bigg)\cup \bigg(\dfrac{6}{5}; + \infty \bigg), то в объединении с a \in \bigg(-\infty; -\dfrac{5}{4}; \bigg) \cup \bigg(\dfrac{1}{2} ; 1 \bigg) получаем, что таких a не существует, то есть такого варианта эта система не имеет.

2) Рассмотрим случай, когда решение неравенств не пересекается (когда система не имеет решений):

Оставшийся промежуток является решением этого варианта: a \in \bigg[-\dfrac{3}{4}; \dfrac{1}{2} \bigg]\cup \bigg[\dfrac{6}{5}; + \infty \bigg) \cup \begin{Bmatrix} -\dfrac{5}{4}; 1 \end{Bmatrix}

ответ: если a \in \bigg(-\infty; -\dfrac{5}{4}; \bigg) \cup \bigg(\dfrac{1}{2} ; 1 \bigg), то x \in \bigg (-\infty; \dfrac{a(4a-9)}{3(2a - 1)} \bigg); если a \in \bigg(-\dfrac{5}{4}; - \dfrac{3}{4}\bigg) \cup \bigg(1; \dfrac{6}{5} \bigg), то x \in \bigg (\dfrac{a(4a-9)}{3(2a - 1)}; -\dfrac{6}{5} \bigg); если a \in \bigg[-\dfrac{3}{4}; \dfrac{1}{2} \bigg]\cup \bigg[\dfrac{6}{5}; + \infty \bigg) \cup \begin{Bmatrix} -\dfrac{5}{4}; 1 \end{Bmatrix}, то система не имеет решений.

4,6(71 оценок)
Открыть все ответы
Ответ:
Sasha808621
Sasha808621
07.07.2020

где ответ Дˆ)つ (づ ●─● )づ (つ≧▽≦)つ (づ ●─● )づ (つ≧▽≦)つ (⊃。•́‿•̀。)⊃ ┐( ˘_˘)┌ ┐( ˘_˘)┌ ┐( ˘_˘)┌

Объяснение:

┐( ˘_˘)┌ ┐( ˘_˘)┌ ┐( ˘_˘)┌ ┐( ˘_˘)┌ ┐( ˘_˘)┌ ┗(^0^)┓ ┗(^0^)┓ ┗(^0^)┓ ┗(^0^)┓ ψ(`∇´)ψ ψ(`∇´)ψ ψ(`∇´)ψ ψ(`∇´)ψ (¦3[▓▓] (¦3[▓▓] (¦3[▓▓] (¦3[▓▓] (¦3[▓▓] ( ‾́ ◡ ‾́ ) ⟵(๑¯◡¯๑) {[(-_-)(-_-)]} {[(-_-)(-_-)]} o(〃^▽^〃)o (⁄ ⁄•⁄ω⁄•⁄ ⁄) (╭☞•́⍛•̀)╭☞ (╯°口°)╯︵ ┻━┻ (ノT_T)ノ ^┻━┻ ♪ \\(^ω^\\ ) (ノ≧∇≦)ノ ミ ┻━┻ (┛◉Д◉)┛彡┻━┻ (ノ◕ヮ◕)ノ*.✧ ᕙ(@°▽°@)ᕗ ᕙ( ͡◉ ͜ ʖ ͡◉)ᕗ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ (┛◉Д◉)┛彡┻━┻ ᕙ( ͡◉ ͜ ʖ ͡◉)ᕗ

4,4(91 оценок)
Ответ:
траппер
траппер
07.07.2020

Пусть в трехмерном пространстве зафиксирована прямоугольная система координат Oxyz, задана прямая a и точка формула, не лежащая на прямой a. Поставим перед собой задачу: получить уравнение плоскости формула, проходящей через прямую a и точку М3.

Сначала покажем, что существует единственная плоскость, уравнение которой нам требуется составить.

Напомним две аксиомы:

через три различные точки пространства, не лежащие на одной прямой, проходит единственная плоскость;

если две различные точки прямой лежат в некоторой плоскости, то все точки этой прямой лежат в этой плоскости.

Объяснение:

4,6(5 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ