М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Фёкла11
Фёкла11
16.04.2023 03:08 •  Алгебра

15-(3х-1)=40 13х-15=7х-5 8х-(2х+4)=2(3х-2)

👇
Ответ:
zaurezhunus
zaurezhunus
16.04.2023
1. 15-(3х-1)=40
15-3х+1=40
-3х=40-15-1
-3х=24
х=24/-3
х=-8
2. 13х-15=7х-5
13х-7х=-5+15
6х=10
х=10/6
х=5/3
3. 8х-(2х+4)=2(3х-2)
8х-2х-4=6х-4
8х-2х-6х=-4+4
0=0
надеюсь правильно 
4,5(35 оценок)
Открыть все ответы
Ответ:
ratmir2rat
ratmir2rat
16.04.2023

\frac{2cos(x)+sin^2(x)}{ctg(x)-sin(2x)} =tg(2x)\\\frac{2cos(x)+sin^2(x)}{\frac{cos(x)}{sin(x)} -sin(2x)} =\frac{sin(2x)}{cos(2x)} \\\frac{2cos(x)+sin^2(x)}{\frac{cos(x)-sin(x)sin(2x)}{sin(x)} } =\frac{sin(2x)}{cos(2x)} \\\frac{sin(2x)+sin^3(x)}{cos(x)-sin(x)sin(2x)} -\frac{sin(x)}{cos(x)} =0\\\frac{2sin(x)cos(x)+sin^3(x)}{\sqrt{1-sin^2(x)}-sin(x)*2sin(x)cos(x)} -\frac{sin(x)}{\sqrt{1-sin^2(x)}} =0\\ \frac{2sin(x)\sqrt{1-sin^2(x)}+sin^3(x)}{\sqrt{1-sin^2(x)}-sin(x)*2sin(x)\sqrt{1-sin^2(x)}} -\frac{sin(x)}{\sqrt{1-sin^2(x)}} =0\\sin(x)=t,-1\leq t\leq 1\\\frac{2t*\sqrt{1-t^2}+t^3}{\sqrt{1-t^2}-t*2t\sqrt{1-t^2}} -\frac{t}{\sqrt{1-t^2}} =0\\\frac{2t\sqrt{1-t^2}+t^3-t(1-t*2t)}{\sqrt{1-t^2}(1-t*2t)} =0 \\\sqrt{1-t^2} (1-t*2t)\neq 0\\\sqrt{1-t^2}\neq0\\x\neq1\\t\neq-1\\1-2x^2\neq0\\t\neq\frac{\sqrt{2}}{2}\\t\neq-\frac{\sqrt{2}}{2} \\ \sqrt{1-t^2} \geq 0\\-1\leq t\leq 1\\2t\sqrt{1-t^2} =-3t^3+t\\4t^2(1-t^2)=t^2-6t^4+9t^6\\3t^2+2t^4-9t^6=0\\t^2(3+2t^2-9t^4)=0\\t^2=0\\3+2t^2-9t^4=0\\t^2=y\\3+2y-9y^2=0\\9y^2-2y-3=0\\D_1=1+27=28\\y_1=\frac{1+\sqrt{28}}{9} \\y_2=\frac{1-\sqrt{28}}{9} \\t_2=\frac{\sqrt{1+\sqrt{28}}}{3} \\t_3=-\frac{\sqrt{1+\sqrt{28}}}{3} \\\frac{1-\sqrt{28}}{9} =(-0,5) ;5\frac{1-5,5}{9}=(-0,5)\\t_1=0\\t_2=\frac{\sqrt{1+5,5}}{3} =\frac{\sqrt{6,5}}{3} ;2

0,7 и -0,7 ∉ ОДЗ

t=0\\ [/tex] sin(x)=0\x=\pi k [/tex]

k∈Z

[/tex] ODZ:cos(x)cos(2x)-sin(x)sin(2x)cos(2x)\neq 0\\cos(2x)(cos(x)-sin(x)sin(2x))\neq 0\\cos(2x)\neq 0\\x\neq \frac{\pi}{4} +\frac{\pi k}{2} \\cos(x)-sin(x)sin(2x)\neq 0\\cos(x)-2sin^2(x)cos(x)\neq 0\\cos(x)(1-2sin^2(x))\neq =0\\cos(x)\neq 0\\x\neq \frac{\pi}{2} +\pi k\\1-2sin^2(x)=0\\cos(2x)\neq 0\\x\neq \frac{\pi}{4} +\frac{\pi k}{2} \\x\neq \left \{ {{\frac{\pi}{4}+\frac{\pi k}{2} } \atop {\frac{\pi}{2} }+\pi k} \right. [/tex]

Первое ОДЗ было сделано на t .Второе ОДЗ было сделано на x

ответ:x=πk,k∈Z

4,6(49 оценок)
Ответ:
1kukukukuku
1kukukukuku
16.04.2023
7х-2у=27,
5х+2у=33.(1)  Предположим, что х и у - это такие числа, при которых оба равенства (1) верны, т.е. (х,у) - решение системы (1).
  Сложим почленно эти равенства. Записывается это так:
7х-2у=27, + 5х+2у=33. (7х+5х)+(-2у+2у)=27+33   Из этого уравнения находим: 12х+0у=60, 12х=60, откуда х=5.
  Теперь подставим х=5 в одно из уравнений системы (1), например в первое: 7*5-2у=27.
  Из полученного уравнения находим: 35-2у=27, -2у=-8, у=4.
  Итак, если система (1) имеет решение, то этим решением может быть только пара чисел: х=5, у=4.
  Убедимся, что х=5, у=4 в самом деле являются решением системы (1). Это можно сделать простой проверкой.
7*5-2*4=27,
5*5+2*4=33.  Оба равенства верные.
  Итак система (1) имеет решение: х=5, у=4.

  Рассмотренный решения системы уравнений называется алгебраического сложения. Для исключения одного из неизвестных нужно выполнить сложение или вычитание левых и правых частей уравнения системы.

Задача 2. Решить систему уравнений

5х+3у=29,
5х-4у=8.(2)  Вычтем почленно эти равенства. _ 5х+3у=29, 5х-4у=8. (5х-5х)+(3у-(-4у))=29-8   Из этого уравнения находим: 0х+7у=21, 7у=21, откуда у=3.
  Теперь подставим у=3 в одно из уравнений системы (2), например во второе: 5х-4*3=8.
  Из этого уравнения находим: 5х=8+12, 5х=20, х=4.
  ответ. х=4, у=3.

  Из рассмотренных примеров видно, что алгебраического сложения оказывается удобным для решения системы в том случае, когда в обоих уравнениях коэффициенты при каком-нибудь неизвестном одинаковы или отличаются только знаком. Если это не так, то нужно постараться уравнять модули коэффициентов( коэффициенты без учета знака) при каком-нибудь одном из неизвестных, умножая левую и правую части каждого уравнения на подходящее число.

Задача 3. Решить систему уравнений

3х+2у=10,
5х+3у=12.  Я хочу уравнять коэффициенты обоих уравнений при у. Для этого я первое уравнение умножаю на 3, а второе - на 2. Получу:
3х+2у=10, | *3
5х+3у=12. | *29х+6у=30,
10х+6у=24.  Почленно вычту из второго уравнения первое. _ 10х+6у=24, 9х+6у=30. х=-6   Подставлю значение х=-6 в первое уравнение системы, получу: 3*(-6)+2у=10, -18+2у=10, 2у=28, у=14.
  ответ. х=-6, у=14.

  Итак, для решения системы уравнений алгебраического сложения нужно:
 1) уравнять модули коэффициентов при одном из неизвестных;
 2) складывая или вычитая почленно полученные уравнения , найти одно неизвестное;
 3) подставляя найденное значение в одно из уравнений исходной системы, найдем второе неизвестное.

Задача 4. Решить систему уравнений

4х-3у=14,
х+2у=-2.  1) уравниваем коэффициенты при х:4х-3у=14, | *1
  х+2у=-2. | *44х-3у=14,
4х+8у=-8.  2) почленно вычитаем из второго уравнения первое
_ 4х+8у=-8, 4х-3у=14. 8у-(-3у)=-8-14   Откуда получаем, что 11у=-22, у=-2.
  3) подставляем у=-2 во второе уравнение исходной системы.
  Получаем: х+2*(-2)=-2, х-4=-2, х=2.
  ответ. х=2, у=-2. 
4,5(59 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ