Надо исследовать функцию y, для этого найдем её производную.
График производной - парабола. Нам нужна точка минимума. Очевидно, что нужно знать точки экстремума. Заметим, что парабола всегда направлена вверх. Если парабола находится выше оси ОХ, точек минимума нет. Если касается, учитывая что в исходной функции 6x^3 (на бесконечности возрастает), то будет минимумом. Это условие D≥0
Далее, пусть - точки экстремума. На интервале
функция будет убывать, то есть минимума своего достигнет в
.
Найдем же эти точки в общем виде:
Теперь же невооруженным глазом видно, что дискриминант всегда больше 0, но докажем это всё-таки: при любых а.
Выразим точки экстремума:
Здесь независимо от значений а точка, где корень взят с "+" будет больше, а значит именно это значение будет точкой минимума.
Теперь подумаем над условием. В таком выражении и будет являться тем самым b. Подбирая любое b, получим выражение через а.
Но нужно ведь выразить а через b. Вернемся к уравнению y'=0
Выражаем а и получаем:
Ну а если через b, то
Но такое соответствие может быть и для точек локальных максимумов. Если значение точки минимума (т.е. то, что с "+" бралось) начать преобразовывать к удобоваримому виду, мы и получим уравнение y'=0, вот начало преобразований:
Уравнение вида
Вот как раз для точки минимума условие g(x)≥0 обязательно.
Вот надо решить это неравенство:
Ищем нули функции
В числителе
Раз D<0, то все выражение больше нуля из-за коэффициента при старшей степени, можно на него поделить без потерь и получить:
А х здесь это b.
То есть при
, где b - точка минимума.
А в остальных случаях для b значение a ему не будет соответствовать как то значение, где b - точка минимума.
Как-то. P.S. странное немного задание, может, я чего-то не понял))
Смотри рисунок на прикреплённом фото
1) функция у = 3х²
График парабола.
Сначала строим параболу у = х² по точкам или по шаблону.
х -4 -3 -2 -1 0 1 2 3 4
у 16 9 4 1 0 1 4 9 16
Затем при каждом х увеличиваем ординату точки графика у = х² в 3 раза и через полученные точки проводим параболу.
2) Функция у = 1/4 (х + 2)²
Сначала строим параболу у = х² (смотри пункт 1))
Затем сдвигаем эту параболу на 2 единицы влево вдоль оси х, получаем график функции у = (х + 2)²
И, наконец, для каждого х графика функции у = (х + 2)² уменьшаем ординату точки в 4 раза и проводим через полученные точки параболу.