Два фермера, работая вместе, могут вспахать поле за 25 часов.
Производительность труда у первого и второго относятся как 2:5.
Фермеры планируют работать поочередно.
Сколько времени должен проработать второй фермер, чтобы поле было вспахано за 45,5 часов?
Пусть Х-производительность 1-го, У-производительность 2-го.
Система:
х+у=125
2х=5у
Последовательно:
2х+2у=2/25
2х-5у=0
7у=2/25 и у=2175
Тогда х=135
Итак, производительности мы нашли.
Поочередно фермеры работали 45,5 часа = 91/2 часа.
Пусть из этого времени 2-ой работал Т часов, тогда 1-ый работал 912-Т часов.
Уравнение:
(91/2-Т)⋅(1/35)+Т⋅(2/175)=1
имеет корень Т=17,5
Проверка.
1. проверим , что х+у=125
1/35+2/175=(70+175)/(175⋅35)=7/175=1/25
2. проверим, что 2х=3у:
2/35=5⋅2/175
3. Проверим уравнение при поочередной работе:
Если 2-ой работал 17,5 часов, то 1-ый работал 45,5-17,5=28 часов
28⋅135+(352)⋅(2175)=28/35+1/5=1
ОТВЕТ: 17,5
нр-не равно
ОДЗ: 2cosx-1нр0; 2cosxнр1; cosxнр1/2; xнр+-п/3+2пк (к=0,1,2,3,...,n); хнр+-п/3,+-п/3+2п,
+-п/3+4п,...
2sinx-корень3=0;sinx=корень3/2;x=(-1)^k*(п/3)+пк;x=п/3,-п/3+п,п/3+2п,-п/3+3п,...
выбираем значения удовлетворяющие ОДЗ:х=-п/3+п,-п/3+3п,...
х=-п/3+пк (к=1,3,5,...,)
ОДЗ:2sinx-1нр0;sinxнр1/2;хнр(-1)^k*п/6+пк (к=0,1,2,3,4,...);хнрп/6,-п/6+п,п/6+2п,-п/6+3п,...
2cosx-корень3=0;cosx=(корень3)/2;х=+-п/6+2пк;х=+-п/6,+-п/6+2п,+-п/6+4п,...
выбираем значения удовлетворяющие ОДЗ:х=-п/6,-п/6+2п,-п/6+4п,...
х=-п/6+2пк (к=0,1,2,3,4,5,...)
ОДЗ:1-соs(6x)нр0;cos6xнр1;6хнр2пк;хнр(п/3)к (к=0,1,2,3,4,5,...);хнр0,п/3,2п/3,п,...
sin6x=0;6x=пк;х=(п/6)к;х=0,п/6,п/3,п/2,2п/3,...
выбираем значения удовлетворяющие ОДЗ:х=п/6,п/2,...
х=(п/6)к (к=1,3,5,7,...)
1) 4,8-0,24-1,2=3,36.
2) (1/12)*3,36.=3,36/12=0,28.
ответ: 0,28.