СВОЙСТВА ЧИСЕЛ. ДЕЛИМОСТЬ 1. Если в произведении двух чисел первый множитель увеличить на 1, а второй уменьшить на 1, то произведение увеличится на 2011. Как изменится произведение исходных чисел, если, наоборот, первый множитель уменьшить на 1, а второй увеличить на 1? ответ. Уменьшится на 2013. Решение. Пусть изначально были числа x и y (с произведением xy ). После того как первый множитель увеличили на 1, а второй уменьшили на 1, получилось (x 1)( y 1) = xy y  x 1. Произведение увеличилось на 2011, то есть y  x 1= 2011 или y  x = 2012 . Если же первый множитель уменьшить на 1, а второй увеличить на 1, получится (x 1)( y 1) = xy y  x 1. Заметим, что xy y  x 1= xy ( y  x) 1= xy 2012 1= xy 2013 . То есть произведение уменьшилось на 2013. 2. Даны ненулевые числа x, y и z. Чему может равняться значение выражения (
|| − ||
) ∙ (
|| − ||
) ∙ (
|| − ||
) ответ. 0. Решение. Докажем, что выражение, стоящее по крайней мере в одной из скобок, равно нулю. Выражение, стоящее в первой скобке, принимает нулевое значение, если x и y одного знака. Аналогично для второй и третьей скобок. Но среди ненулевых чисел x, y и z обязательно найдутся либо два положительных числа, либо два отрицательных. А значит, хотя бы один из трех множителей равен нулю. Поэтому все произведение равно нулю. 3. Сравнить числа: 9 9 100 1 . . . 5 2 5 3 1 5 1 5 2 1 5 0 5 1 1         и 100 1 . ответ обосновать! ответ. Числа равны. Решение. Справедливо равенство 1 1 1 ( 1) 1    n  n  n n . Применяя его к сумме дробей, получим 100 1 100 1 5 0 1 100 1 9 9 1 . . . 5 2 1 5 1 1 5 1 1 5 0 1          . 4. Сумма двух положительных чисел и сумма их кубов являются рациональными числами. Можно ли утверждать, что а) сами числа рациональны? б) сумма их квадратов рациональна? ответ. а) Нет. б) Да, можно. Указание. а) В качестве примера можно взять числа a  2 1, b  2 1 . б) Пусть числа x  a  b и 3 3 y  a  b рациональны. Тогда 3 ( ) 3 3 3 x  a  b  ab a  b = y  3x  ab. Отсюда x x y ab 3 3   – рациональное число. Поэтому число a b (a b) 2ab 2 2 2     также рационально.
-3+3<2x<-1+3
0<2x<2|:2
0<x<1
ответ: (0;1)