М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Рената515
Рената515
10.01.2021 15:37 •  Алгебра

Выполните действие а) (-3/b²)² б) y²-y/2xy * 2x/y²-1

👇
Ответ:
vulpe
vulpe
10.01.2021
А) (-3/b²)² = (-3)²/b⁴= 9/b⁴
б) y² - y/2xy*2x/y²-1= y² - 1/2x*2x/y² - 1 = y² - 1/y² -1
4,6(59 оценок)
Открыть все ответы
Ответ:
veronicavasilyk
veronicavasilyk
10.01.2021

я тут уже решал подобную задачу столько раз, что не помню, когда был первый.

 

Точки пересечения биссектрис - это центры окружностей, касающихся левой (или правой) стороны и обеих оснований. Поэтому отрезок, соединяющий эти центры - ЧАСТЬ СРЕДНЕЙ ЛИНИИ :))). Далее, если бы эти центры совпадали, то длина средней линии была бы равна ПОЛУСУММЕ БОКОВЫХ СТОРОН, то есть 14. (в этом случае трапеция была бы "ОПИСАНА ВОКРУГ ОКРУЖНОСТИ", а у таких 4угольников суммы противоположных сторон равны). Поэтому ответ 21-14=7. :)))

 

(Именно на это расстояние как бы раздвинуты вписаные окружности - пояснение такое :))). 

 

Еще вариант решения, по сути - такой же

 Обе точки пересечения биссектрис лежат на одинаковом расстоянии от оснований, это - центры окружностей, касающихся оснований. Одна касается левого ребра 13, другая - правого 15. Если точки касаний делят верхнее основание на отрезки x, у, z, то сразу ясно, что z - искомое расстояние. И есть 3 соотношения.

 

z+x+y = b;

z+(13-x)+(15-y) = a;

(a + b)/2 = 21

 

Складываем и делим на 2.

 

z = 7

 

Еще вариант решения - проводим спецальную касательную к ЛЕВОЙ ОКРУЖНОСТИ (то есть - с центром в точке F), параллельную СD. Легко видеть, что окружность с центром в F вписана в трапецию с основаниями (13 - z) и (15 - z), где z - ИСКОМОЕ РАССТОЯНИЕ между центрами. Далее - см. начало :))) 

4,4(98 оценок)
Ответ:
при любом значении b решите уравнение : 
(x^2+(3b+2)X+2b^2 +3b+1) / (x^2 - 5x +4)=0

(x²+(3b+2)x+2b² +3b+1) / (x² - 5x +4)=0 ;
ОДЗ: x² - 5x +4≠0 ⇒ [ x ≠ 1 ; x ≠ 4.
---
x²+(3b+2)x+2b² +3b+1=0 ;
D=(3b+2)² - 4(2b² +3b+1)= b² ≥ 0  всегда  имеет  решения :
x₁  = (-3 b- 2 - b)/2 = -1 - 2b , если  -1 - 2b ≠ 1  и -1 - 2b ≠ 4 ,
т.е. если b ≠ -1 и b ≠ -2,5.
x₂  = (- 3b - 2 +b)/2 = -1 - b , опять если  -1 - b ≠ 1 b и -1 - b ≠ 4 , .
т.е.  если b ≠ -2 и b ≠ - 5.

 * * * * P.S.
Можно было  в самом начале для уравнения x²+(3b+2)x+2b² +3b+1=0 исключить  x =1 и x = 4 в качестве корней;
 
1)  1²+(3b+2)1+2b² +3b+1=0 ⇔2b² +6b+4 =0⇔ 
b² +3b+2 =0 ⇒[ b = -2 ; b = -1 .
2) 4²+(3b+2)4+2b² +3b+1=0⇔2b² +15b+25 =0⇔ [ b = -5 ; b = - 2,5 .

b ≠ -5 ; -2,5 ;  -2 ; - 1.
4,4(64 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ