Рассмотрим первое уравнение:
Данную совокупность можно представить в виде графика: начертим две параболы и оставим только их части выше (в первом случае) и ниже (во втором) оси абсцисс.
Рассмотрим второе уравнение:
Оно задаёт окружность радиусом |a|.
Оба графика симметричны относительно прямых y = 0 и x = 1. Если окружность касается парабол внутренним образом, система имеет 4 решения, затем, если увеличивать радиус, при пересечении она имеет 8 решений. Когда окружность проходит через общие точки частей парабол (-3; 0), (5; 0), система имеет 6 решений. Затем при пересечении — 4 решения, при внешнем касании — 2 решения.
В случае, когда реализуется 6 решений, окружность проходит через точку (5; 0). Её центр расположен в точке (1; 0). Значит, радиус равен 4:
ответ: ±4
x=0.6
2) 8x+1-2x+5=0
6x+6=0
6x=-6
x=-1
3) 4x-2-6x-3=3
-2x-2-3-3=0
-2x-8=0
-2x=8
2x=-8
x=-4