№1 сколько решений в целых числах имеет уравнение 2xy+3x+5y+7=0? №2 диагонали ac и bd прямоугольника abcd пересекаются в точке o. радиусы вписанных в треугольники aob и boc окружностей равны 1 и r, соответственно. какие значения может принимать r?
1) Запишем это уравнение в виде (2x+5)(2y+3)=1 (проверяется раскрытием скобок и делением на 2). Т.к. у 1 есть только два делителя 1 и -1, то возможны только 2 варианта: 2x+5=1, 2у+3=1, откуда х=-2, у=-1 или 2x+5=-1, 2у+3=-1, откуда х=-3, у=-2. ответ: 2 решения.
2) Введем обозначения как на рисунке. Пусть ∠O₁BM=x. BO₁ и BO₂ - биссектрисы углов, сумма которых равна 90°, поэтому ∠O₂BN=45°-x. По свойству касательных BE=BM=ctg(x) и BF=BN=r·ctg(45°-x), откуда BF/BE=r·ctg(45°-x)/ctg(x)=r·tg(x)/tg(45°-x). С другой стороны, BF/BE=AD/AB=tg(2x). Таким образом, r·tg(x)/tg(45°-x)=tg(2x). После несложных преобразований получаем: r=2/(1+tg(x))². Т.к. х изменяется от 0 до 45°, то r может принимать значения от 1/2 до 2.
Сначала определим время, за которое мотоциклист планировал проехать свой путь (первоначальная скорость=Х). t=120:X Потом он ехал со скоростью 1,2 Х те же 120 км, плюс остановка в пути 15 минут, это 0,25 часа (15:60=0,25). Можем составить уравнение: 120:Х =120:1,2Х + 0,25 Приводим к общему знаменателю, это 1,2Х , подписываем дополнительные множители, перемножаем и получаем новое уравнение: 144 = 120 + 0,3Х -0,3Х = 120 - 144 -0,3Х = - 24 0,3Х = 24 Х = 24 : 0,3 Х = 80 (км\час, первоначальная скорость мотоциклиста). ПРОВЕРКА: 120:80=1,5 (часа) 120:96+0,25=1,5(часа).
1.Пусть f(x)=ax²+bx+c. Ясно, что a-b+c=f(-1). По условию f(-1)<0, и многочлен ax^2+bx+c не имеет действительных корней. Но это значит что парабола ax²+bx+c полностью находится ниже оси x и любое значение функции f(x) будет отрицательным. Значит f(0)=c<0 ответ: с<0. 2. y=(x^2+x)(x^2+9x+20) y'=(2x+1)(x^2+9x+20)+(2x+9)(x^2+x)=2(2x+5)(x^2+5x+2) 2(2x+5)(x^2+5x+2)=0 x=-5/2 x=-5/2+√17/2 x=-5/2-√17/2 Производная меняет знак с - на + в точках x=-5/2+√17/2, x=-5/2-√17/2 значит в этих точках функция имеет минимум. Подставляя значения в функцию находим y=-4. ответ: -4.
Т.к. у 1 есть только два делителя 1 и -1, то возможны только 2 варианта: 2x+5=1, 2у+3=1, откуда х=-2, у=-1 или
2x+5=-1, 2у+3=-1, откуда х=-3, у=-2. ответ: 2 решения.
2) Введем обозначения как на рисунке. Пусть ∠O₁BM=x. BO₁ и BO₂ - биссектрисы углов, сумма которых равна 90°, поэтому ∠O₂BN=45°-x. По свойству касательных BE=BM=ctg(x) и BF=BN=r·ctg(45°-x), откуда BF/BE=r·ctg(45°-x)/ctg(x)=r·tg(x)/tg(45°-x). С другой стороны,
BF/BE=AD/AB=tg(2x). Таким образом, r·tg(x)/tg(45°-x)=tg(2x). После несложных преобразований получаем: r=2/(1+tg(x))². Т.к. х изменяется от 0 до 45°, то r может принимать значения от 1/2 до 2.