Если я правильно поняла, то нужно заполнить поле y при определенном x. Так и поступим.
Подставляем на место x поочередно числа. Первое уравнение я напишу подробно.
y= -3.1 + (-8.9) x= -8.9
y= -3.1-8.9 (плюс на минус будет минус)
Если только начали работать с минусами то можно их вынести за скобку.
y= -(3,1+8,9)
y= -(12) = -12
При x= -8.9 y=-12
Идем далее. Все делаем по тому же принципу, расписывать я эти выражения не буду.
x=-2.4
y= -3.1+(-2.4)
y= -5.5 При x=-2.4 y=-5.5
x= 1.9
y=-3.1+1.9
y= 1.9-3.1(от перемены мест слагаемых значение суммы не меняется)
y=-1.2 x= 1.9
y= -3.1+7.6
y= 4.5 x=7.6
y=-3.1+12.9
y= 9.8 x= 12.9
Готово. Надеюсь правильно поняла задание. Пс. Это можно было решить и на калькуляторе)
Если в уравнении рассматриваются частные случаи sinx=0 и cosx=0, то пользуются более простыми формулами, и пользуются периодом П, так как нули синуса и косинуса повторяются через период, равный П, хотя в общем случае наименьший положительный период для этих функций равен 2П.
sinx=0, x=πn
cosx=0, x=π/2+πn
В общем случае sinx=a, x=(-1)^n*arcsina+πn и в случае sinx=0 можно было бы записать
х=(-1)^n*arcsin0+πn=(-1)^n*0+πn=πn.
Если решаем ур-ие sinx=1, то x=π/2+2πn - частный случай, а в общем случае писали бы х=(-1)^n*arcsin1+πn=(-1)^n*π/2+πn - ,более сложный вид, но правольная запись.
sinx=-1 x=-π/2+2πn - частный случай
Если cosx=a,то х=±arccosa+2πn.Можно для ур-ия cosx=0 записать решение через общую формулу х=±arccos0+2πn=±π/2+2πn (это более сложная запись, но правильная)
cosx=1, x=2πn
cosx=-1, x=π+2πn
Для уравнений tgx=a, x=arctga+πn
ctgx=a, x=arcctga+πn
Итак, если использовать общие формулы, то период только для косинуса берём 2πn. а для остальных функций используем πn.
1)Рассм. прямоугольный треуг-к АВD, образованный одной из диагоналей и 2 сторонами прямоугольника(а - первая сторона, b - вторая сторона). Тогда по теореме пифагора квадрат гипотенузы равен сумме квадратов катетов:
45^2 = a^2 + b^2
Площадь прямоугольника - это произведение сторон а и b:
a * b = 972
a^2 + b^2 можно представить как полный квадрат:
(a + b)^2 - 2ab = a^2 + b^2 (a^2 + b^2 + 2ab) - 2ab = a^2 + b^2
2)Теперь вместо ab подставляем 972, вместо a^2 + b^2 - 45^2 (или 2025)
(a + b)^2 - 1944 = 2025
(a + b)^2 = 3989
a + b = кв. корень 3969 = 63
3)Теперь решим систему нера-в:
a + b = 63
a * b = 972, выражаем а через 1-ое урав-е и подставляем во второе:
a = 63 - b
(63 - b) * b = 972
a = 63 - b
63b - b^2 - 972 = 0
a = 63 - b
(b - 27) * (b - 36) = 0 , (следовательно 27 и 36 - корни кв. урав-я),
а = 36 a = 27
b = 27, b = 36, следовательно
27 см и 36 см - длины сторон прямоугольника.
ответ: 27 и 36