М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Destroyer0
Destroyer0
26.09.2021 00:53 •  Алгебра

Решите показательное уравнение (0,1)^x+2=100

👇
Ответ:
evelinkazelenyak
evelinkazelenyak
26.09.2021
100 = 10^2
0.1 = 10^-1

(10^-1)^(x+2) =10^2

-(x+2) =2

-x -2 =2

-x =2+2

x = -4
4,7(82 оценок)
Открыть все ответы
Ответ:
moda712
moda712
26.09.2021

У Вас была сумма x₁² + x₂² , если бы Вы написали, что это равно (x₁ + x₂)²,то получилось бы, что в этот квадрат суммы входит 2x₁x₂ , так как (x₁ + x₂)² = x₁² + 2x₁x₂ + x₂² .Для того, чтобы x₁² + x₂²  равнялось бы (x₁ + x₂)² нужно из квадрата суммы вычесть 2x₁x₂ .

Попробую по другому объяснить.

Была сумма x₁² + x₂² . Мы не можем написать, что :

x₁² + x₂² = (x₁ + x₂)² потому что (x₁ + x₂)² = x₁² + 2x₁x₂ + x₂², то есть справа лишнее слагаемое 2x₁x₂ . Поэтому написав

x₁² + x₂² = (x₁ + x₂)² нужно из правой  части вычесть это лишнее слагаемое, только тогда левая часть будет равна правой и получим :

x₁² + x₂² = (x₁ + x₂)² - 2x₁x₂

4,5(4 оценок)
Ответ:

а). В этом числе ноль встречается 9 раз, а числа 2, 3, 9 - по 20 раз.

б). Да, 123...9899 делится на 9.

Сначала посчитаем, сколько всего в числе 1234..9899 было выписано цифр 0, 1, 2, 3, 9. Это тоже самое, что и посчитать, сколько раз встречаются эти же цифры в числах от 1 до 99.

Цифра 0:

10, 20, 30, 40, 50, 60, 70, 80, 90 - всего 9 раз.

Цифра 1:

1, 10 - 19 (11 раз), 21, 31, 41, 51, 61, 71, 81 ,91 - всего 20 раз.

Понятно, что 2, 3, 9 встречаются столько же раз, сколько и 1 (все они могут стоять 10 раз в разряде единиц, и 10 раз - в разряде десятков).

Теперь нужно узнать, делится ли число 1234..9899 на 9.

Признак делимости на 9: число делится на 9 тогда и только тогда, когда сумма его цифр тоже делится на 9.

Так что мы должны узнать, делится ли 1 + 2 + 3 + ... + 99 на 9.

Для этого найдем искомую сумму по формуле арифметической прогрессии:

S = \frac{(a_1+a_n)n}{2} = \frac{(1+99)*99}{2} = \frac{9900}{2} = 4950.

4950:9=550.

Так как получилось разделить нацело, то 1234...9899 делится на 9.

4,4(46 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ