У Вас была сумма x₁² + x₂² , если бы Вы написали, что это равно (x₁ + x₂)²,то получилось бы, что в этот квадрат суммы входит 2x₁x₂ , так как (x₁ + x₂)² = x₁² + 2x₁x₂ + x₂² .Для того, чтобы x₁² + x₂² равнялось бы (x₁ + x₂)² нужно из квадрата суммы вычесть 2x₁x₂ .
Попробую по другому объяснить.
Была сумма x₁² + x₂² . Мы не можем написать, что :
x₁² + x₂² = (x₁ + x₂)² потому что (x₁ + x₂)² = x₁² + 2x₁x₂ + x₂², то есть справа лишнее слагаемое 2x₁x₂ . Поэтому написав
x₁² + x₂² = (x₁ + x₂)² нужно из правой части вычесть это лишнее слагаемое, только тогда левая часть будет равна правой и получим :
x₁² + x₂² = (x₁ + x₂)² - 2x₁x₂
а). В этом числе ноль встречается 9 раз, а числа 2, 3, 9 - по 20 раз.
б). Да, 123...9899 делится на 9.
Сначала посчитаем, сколько всего в числе 1234..9899 было выписано цифр 0, 1, 2, 3, 9. Это тоже самое, что и посчитать, сколько раз встречаются эти же цифры в числах от 1 до 99.
Цифра 0:
10, 20, 30, 40, 50, 60, 70, 80, 90 - всего 9 раз.
Цифра 1:
1, 10 - 19 (11 раз), 21, 31, 41, 51, 61, 71, 81 ,91 - всего 20 раз.
Понятно, что 2, 3, 9 встречаются столько же раз, сколько и 1 (все они могут стоять 10 раз в разряде единиц, и 10 раз - в разряде десятков).
Теперь нужно узнать, делится ли число 1234..9899 на 9.
Признак делимости на 9: число делится на 9 тогда и только тогда, когда сумма его цифр тоже делится на 9.Так что мы должны узнать, делится ли 1 + 2 + 3 + ... + 99 на 9.
Для этого найдем искомую сумму по формуле арифметической прогрессии:
Так как получилось разделить нацело, то 1234...9899 делится на 9.
0.1 = 10^-1
(10^-1)^(x+2) =10^2
-(x+2) =2
-x -2 =2
-x =2+2
x = -4