Область определения функции f(x) - это все значения х, при которых функция существует, то есть, можно найти ее значение. Область определения обозначается D(f).
А) f(x)=37-3x
Это линейная функция. Вместо х можно подставить любое значение и получить у. Значит, функция определена при любом значении х. Ее область определения - вся числовая ось.
ответ: D(f) = R
Б) q(x)=35/x
Это дробно-рациональная функция. Она определена при любом значении х, кроме тех, которые обращают знаменатель в ноль. В данном случае, х не должен равняться нулю. Область определения функции q(x) - вся числовая ось, кроме точки 0.
ответ: D(q)=( - ∞; 0 ) ∪ ( 0; + ∞ )
В) u(x)=x²-7
Это квадратичная функция. Вместо х можно подставить любое значение и получить у. Значит, эта функция также определена при любом значении х, и ее область определения - вся числовая ось.
ответ: D(u) = R
Г) у=√х
Так как подкоренное выражение не может принимать отрицательные значения, то вместо х можно брать лишь положительные числа и число ноль, то есть область определения той функции - множество неотрицательных чисел.
ответ: D( f ) = [ 0; +∞ )
Поскольку функция содержит квадрат переменной х, то она квадратная. Следовательно, ее графиком будет парабола.
О параболе известно, что у нее есть вершина, что ветви ее могут быть направлены вверх или вниз, и что она может быть симметрична оси Оу.
Начнем с симметричности относительно оси Оу.
Если функция симметрична, то она называется четной. Свойство четности можно проверить, подставив вместо переменной х противоположное ей значение, то есть —х. Если в результате получим уравнение функции без изменений, то функция является четной, а значит симметричной относительно оси Оу.
Итак, проверим функцию на четность:
 — функция четная.
Далее определим куда направлены ветви параболы. Для этого достаточно посмотреть на знак перед квадратом переменной х. в нашем случае перед ним стоит условно знак «плюс», а это значит, что ветви параболы будут направлены вверх.
Для определения координаты точки вершины параболы будем использовать готовую формулу, которая дает возможность найти значение первой координаты точки вершины параболы:

Чтобы получить значение второй координаты вершины подставим найденное значение х в уравнение функции:

Таким образом, вершиной параболы является точка (0; —4).
Теперь нужно вычислить еще какое-то количество точек, которые будут принадлежать параболе, для ее построения.
Возьмем четыре произвольных значения переменной х и посчитаем для них значение функции у:
х = 1:  —точка (1; —3).
х = 2:  —точка (2; 0).
х = —1:  —точка (—1; —3).
х = —2:  —точка (—2; 0).
Проведем через вершину и полученные точки кривую и получим график функции y = x^2 — 4.

6-2х+7х=4-3х-2
-2х+7х+3х=4-2
8х=2
х=0,25
б)Переносим 1 в левую часть и все приводим к общему знаменателю 15
Получатся: 5х+15х-3-15=0
Отсюда: 20х-18
20х=18
х=0,9