2) находим значение этих производных в точке М: du/dx(2;-2)=2/(4+4)=1/4=0,25; du/dy(2;-2)=2/(4+4)=1/4=0,25.
3) Уравнение x²+y²=4x, или x²-4x+y²=(x-2)²+y²-4=0, или (x-2)²+y²=4, очевидно, есть уравнение окружности с центром в точке М1(2;0) и радиусом r=√4=2.
4) Обозначим F(x,y)=x²-4x+y². Найдём dF/dx и dF/dy. dF/dx=2x-4, dF/dy=2y.
5) Найдём значения этих производных в точке М. dF/dx(2;-2)=0, dF/dy(2;-2)=-4. Эти значения являются координатами нормального вектора, проходящего через точку М, то есть вектора, перпендикулярного вектору, направленному по касательной к окружности в данной точке М. Из бесчисленного множества последних выберем нормированный. Пусть этот вектор имеет координаты Ax и Ay. Тогда, так как векторы перпендикулярны, их скалярное произведение равно 0. Но последнее можно записать в виде 0*Ax+(-4)*Ay=0, откуда Ay=0. С другой стороны, скалярное произведение Ax*Ax+Ay*Ay=(Ax)²+(Ay)²=1, откуда Ax=+1 и Ax=-1.
6) Производная по направлению в точке М вычисляется по формуле du/dl=du/dx(2;-2)*cos α +du/dy(2;-2)*cos β, где cos α=Ax/модуль А, cos β=Ay/модуль А. Но модуль А=1, и тогда cos α=1 либо cos α=-1, cos β=0. А тогда du/dl=0,25*1=0,25, либо du/dl=-0,25. ответ: 0,25 либо -0,25.
Во-первых, область определения 1) -7 - 8x - x^2 >= 0 x^2 + 8x + 7 <= 0 (x + 7)(x + 1) <= 0 x = [-7; -1] 2) 2a + 3 - ax >= 0 (потому что корень арифметический) Это проще потом подставить для проверки.
Во-вторых, решаем само уравнение. Оставляем корень слева, остальное справа Возводим в квадрат -x^2 - 8x - 7 = (-ax + 2a + 3)^2 = a^2*x^2 - 2ax(2a+3) + (2a+3)^2 -x^2 - 8x - 7 = a^2*x^2 - 4a^2*x - 6a*x + (4a^2+12a+9) Сносим все вправо 0 = x^2*(a^2+1) + x*(-4a^2 - 6a + 8) + (4a^2+12a+9+7) x^2*(a^2+1) - 2x*(2a^2 + 3a - 4) + (4a^2+12a+16) = 0 Если это уравнение имеет единственный корень, то возможны 2 варианта: A) D = 0 B) D > 0, но только один из корней принадлежит [-7, -1]. Решаем D/4 = (2a^2 + 3a - 4)^2 - (a^2+1)(4a^2+12a+16) = = 4a^4+12a^3-16a^2+9a^2-24a+16 - - (4a^4+12a^3+16a^2+4a^2+12a+16) = = -32a^2 + 5a^2 - 36a = -27a^2 - 36a = 9a*(-3a - 4) A) D = 0 при a1 = 0 (x = -4), a2 = -4/3 (x = -8/5)
B) D > 0 при a ∈ (-4/3; 0) Дальше надо решить две такие системы: 1) { [2a^2+3a-4 - 3√(-3a^2-4a)] / (a^2+1) > -7 { [2a^2+3a-4 - 3√(-3a^2-4a)] / (a^2+1) < -1 { [2a^2+3a-4 + 3√(-3a^2-4a)] / (a^2+1) > -1
8х^6=2х^18