докажем утверждение от противного.
можно предположить, что для любых двух разных точек a и b из s найдется отличная от них точка x из s такая, что либо xa < 0,999ab, либо xb < 0,999ab.
переформулируем утверждение: для любого отрезка i с концами в s и длиной l найдется отрезок i′ с концами в s длины не более 0,999l, один из концов которого совпадает с некоторым концом i.
или, иначе говоря, i′ пересекает i.
возьмем теперь первый отрезок i1 длины l и будем брать отрезки i2, i3, …так, что ik + 1 пересекается с ik и |ik + 1| < 0,999|ik|.
все эти отрезки имеют концы в s. ломаная не короче отрезка, соединяющего ее концы, поэтому расстояние от любого конца ik до любого конца i1 не превосходит
следовательно, в квадрате 2000l × 2000l с центром в любом из концов i1 лежит бесконечное число точек s.
но из условия следует конечность их числа в любом квадрате.
ответ:
раскроем выражение в уравнении
((xy+x)−3)2+((xy+y)−4)2=0
получаем квадратное уравнение
2x2y2+2x2y+x2+2xy2−14xy−6x+y2−8y+25=0
это уравнение вида
a*x^2 + b*x + c = 0
квадратное уравнение можно решить
с дискриминанта.
корни квадратного уравнения:
x1=d−−√−b2a
x2=−d−−√−b2a
где d = b^2 - 4*a*c - это дискриминант.
т.к.
a=2y2+2y+1
b=2y2−14y−6
c=y2−8y+25
, то
d = b^2 - 4 * a * c =
(-6 - 14*y + 2*y^2)^2 - 4 * (1 + 2*y + 2*y^2) * (25 + y^2 - 8*y) = (-6 - 14*y + 2*y^2)^2 - (4 + 8*y + 8*y^2)*(25 + y^2 - 8*y)
уравнение имеет два корня.
x1 = (-b + sqrt(d)) / (2*a)
x2 = (-b - sqrt(d)) / (2*a)
Примем
скорость мотоциклиста - а, км/час
время в пути - в, час
расстояние между городом и поселком - с, км
тогда
с=3*а
с=2*(а+25)
3*а=2*(а+25)
3*а=2*а+50
3*а-2*а=50
а=50 км/час скорость мотоциклиста
с=3*50 = 150 км - расстояние между городом и поселком
Проверим
150=2*(50+25)
150=2*75
150=150