М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ighjkhh
ighjkhh
15.11.2021 12:53 •  Алгебра

Представьте выражение a в пятой степени умножить на a в минус второй степени и это поделить на а в десятой степени

👇
Ответ:
nastyabogatiko
nastyabogatiko
15.11.2021
А^5×a^-2/а^10=а (5+(-2)-10)=а^-7
4,8(45 оценок)
Открыть все ответы
Ответ:
aynaaaaa
aynaaaaa
15.11.2021

2a^2 - 3b) * (a^2 + 2ab + 5b^2) = 2a^4 + 4a^3 * b + 10a^2 * b^2 - 3a^2 * b - 6ab^2 - 15b^3;

2) (x^2 - 2xy) * (x^2 - 5xy + 3y^2) = x^4 - 5x^3 * y + 3x^2 * y^2 - 2x^3 * y + 10x^2 * y^2 - 6xy^3 = x^4 - 7x^3 * y + 13x^2 * y^2 - 6xy^3;

3) (x - y) * (x^3 + x^2 * y + x * y^2 + y^3) = x^4 + x^3 * y + x^2 * y^2 + xy^3 - x^3 * y - x^2 * y^2 - xy^3 - y^4 = x^4 - y^4;

4) (a + b) * (a^3 - a^2 * b + a * b^2 - b^3) = a^4 - a^3 * b + a^2 * b^2 - ab^3 + a^3 * b - a^2 * b^2 + ab^3 - b^4 = a^4 - b^4;

5) (5a - 4b) * (a^3 + 2a^2 * b - 5a * b^2 - 3b^3) = 5a^4 + 10a^3 * b - 25a^2 * b^2 - 15ab^3 - 4a^3 * b - 8a^2 * b^2 + 20ab^3 + 12b^4 = 5a^4 + 6a^3 * b - 33a^2 * b^2 + 5ab^3 + 12b^4;

6) (2x + 3y) * (x^3 + 3x^2 * y - 3x * y^2 + 4y^3) = 2x^4 + 6x^3 * y - 6x^2 * y^2 + 8xy^3 + 3x^3 * y + 9x^2 * y^2 - 9xy^3 + 12y^4 = 2x^4 + 9x^3 * y + 3x^2 * y^2 - xy^3 + 12y^4.

Объяснение:

если модешь сделай лутшим ответом

4,6(76 оценок)
Ответ:
Marieta111
Marieta111
15.11.2021
План действий такой: 1) ищем производную
                                      2) приравниваем её к нулю и решаем получившееся уравнение
                                      3) Смотрим: какие корни попали в указанный промежуток и ищем значения данной функции в этих точках и на концах данного отрезка;
                                       4) пишем ответ.
Поехали?
1) f'(x) = ((x² -8x)'(x+1) - (x² -8x)(x+1)')/(x+1)²=
 ((2x-8)(x+1) - (x²-8x))/(x+1)²= (2x² -8x +2x -8 - x² +8x)/(x+1)²=
=(x² +2x -8) / (х+1)²
2)(x² +2x -8) / (х+1)² ⇒ x² +2x -8 =0, ⇒ х = - 4   и   х = 2
3) Из найденных корней в указанный промежуток попало  х = -4
а) х = -4
f(-4) = (-4)² -8*(-4) /(-4+1) = 48/(-2) = -24
б) х = -5
f(-5) = (-5)² -8*(-5) /(-5+1) = 65/(-4) = -13,75
в) х = -2
f(-2) = (-2)² -8*(-2)/(-2+1) = 20/(-1) = -20
4) maxf(x) = f((-2) = -20
    minf(x) = f(-4) = -24
4,8(4 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ