На складе было 300 т картофеля.в первый день со склада вывезли p т картофеля, а во второй день на 2 т меньше,чем в первый. сколько тонн картофеля осталось на складе?
Во-первых, область определения { 4 - x^2 >= 0, отсюда x = [-2; 2] { -y + √(4 - x^2) >= 0, отсюда y <= √(4 - x^2); y^2 <= 4 - x^2; y^2 + x^2 <= 4; y = [-2; 2] Это область внутри круга с центром О(0; 0) и радиусом 2. Во-вторых, решаем систему { x*y = a { y + 2 - |x| >= 0, отсюда |x| <= y + 2, учитывая обл. опр, это будет верно всегда. { x*y*√(-y - √(4 - x^2)) >= 0 В третьем неравенстве корень арифметический, то есть неотрицательный. Значит, есть два варианта: 1) -y - √(4 - x^2) = 0 √(4 - x^2) = -y (x1 = -2; y1 = 0); (x2 = 2; y2 = 0); (x = 0; y = -2). Во всех трех случаях а = xy = 0.
Это и будет единственное решение, при котором система имеет 3 корня.
1-ый случай, когда a>0, b>0, тогда точка A лежит в 1-ой координатной четверти. Следовательно, точка B лежит в 3-ей координатной четверти и не принадлежит графику функции y=x^2, так как это парабола, и обе ее ветви лежат в 1-ой и 2-ой к.четвертях. 2-ой случай, когда a>0, b<0, тогда точка A лежит в 4-ой координатной четверти. Этого не может быть, так как ветви параболы по условию находятся в 1 и 2-ой к.ч. 3-ий случай, когда a<0, b>0, тогда точка A лежит в 2-ой координатной четверти. Следовательно, точка B лежит в 4-ой координатной четверти и не принадлежит графику функции y=x^2. 4-ый случай, когда a<0, b<0, тогда точка A лежит в 3-ей к.ч. Этого не может быть, так как ветви параболы по условию находятся в 1 и 2-ой к.ч.
Если тебя не просят рассматривать случаи с различными знаками a и b, то доказательство идет другое. Координаты точки A имеют положительные знаки, отсюда следует, что она находится в первой координатной четверти. Координаты точки B имеют отрицательные знаки, отсюда следует, что она лежит в 3-ей координатной четверти, а значит, она не может принадлежать графику функции. Это будет отчетливо видно, если ты посмотришь на график этой функции.