Для того, чтобы найти функцию, обратную данной. надо х и у поменять местами, и вновь выразить у через х: y = (2x-1) / (x+3) x = (2y-1) / (y+3) - выражаем теперь у через х: x(y+3) = 2y - 1 y(2-x) = 3x+1 y = (3x+1) / (2-x) - обратная функция. Теперь необходимо ее построить. 1) Найти точки экстремума и (или) точки перегиба: y' = [3*(2-x) + (3x+1) ] / (2-x)^2 = [6-3x+3x+1] / (2-x)^2 = 7/(2-x)^2 - производная всегда положительная, значит функция у возрастает на всей области определения. 2) ОДЗ: 2-x # 0, x # 2. Значит прямая х=2 - ассимптота функции у. 3) Нули функции: y=0, 3x+1=0, x=-1/3. Точка (-1/3; 0). 4) Пересечение с осью Оу: х=0, у=1/2. Точка (0; 1/2)
Переписываем уравнение прямой в виде y=-3*x+4. Отсюда следует, что угловой коэффициент этой прямой k1=-3. Так как касательные к окружности перпендикулярны к данной прямой, то их угловой коэффициент k2=-1/k1=1/3. Будем искать уравнения касательных в виде y-y1=k2*(x-x1) и y2=k2*(x-x2), где x1,x2 и y1,y2 - абсциссы и ординаты точек касания. Запишем уравнение окружности в виде F(x,y)=(x-1)²+(y+3)²-40=0. Эта функция является неявной по отношению к x. Дифференцируя её по x и учитывая при этом, что y также является функцией от x, находим dF/dx=2*(x-1)+2*(y+3)*y'=0. Отсюда производная y'(x)=(1-x)/(y+3). Но y'(x1)=(1-x1)/(y1+3), а y'(x2)=(1-x2)=(y2+3). А так как y'(x1)=y'(x2)=k2=1/3, то отсюда следует система уравнений:
(1-x1)/(y1+3)=1/3 (1-x2))/(y2+3)=1/3
Но так как при этом точки касания принадлежат окружности, то их координаты должны удовлетворять и её уравнению. Поэтому к написанной выше системе добавляются ещё два уравнения:
(x1-1)²+(y1+3)²=40 (x2-1)²+(y2+3)²=40
Решая теперь получившуюся систему из 4-х уравнений, находим x1=-1⇒y1=3 либо x1=3⇒y1=-9. А так как для x2 и y2 уравнения точно такие, как для x1 и y1, то и решения получаются одинаковыми: x2=x1, y2=y1. Так и должно быть, потому что окружность имеет лишь две касательных, перпендикулярных данной прямой - соответственно и точек касания будет лишь две. Составляем теперь уравнения касательных: y-3=1/3*(x+1) и y+9=1/3*(x-3). Эти уравнения приводятся к виду x-3*y+10=0 и x-3*y-30=0. ответ: x-3*y+10=0, x-3*y-30=0.
АС=66см. AC=BCзнакследовательно
BC=AC BC=AB
AB=4BC BC+4BC=AC
Найти: 5BC=66
BC-? BC=13,2 AB=4BC=52,8
ответ:13,2 ;52,8
Если не правельно,извини