М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
COCOBAKUOFFICI
COCOBAKUOFFICI
01.02.2020 04:29 •  Алгебра

При каких x f(x)=0 1) f(x)=x^2 * e^-x 2) f(x)=x/2 - cosx/2 (косинус x деленное на 2)

👇
Ответ:
nafani1
nafani1
01.02.2020
1) f(x)=x^2 * e^-x
x²*e^-x=0
e^-x>0 при любом х
x²=0
x=0
2) f(x)=x/2 - cosx/2
x/2=cosx/2
x=-1
4,8(75 оценок)
Открыть все ответы
Ответ:
Рокистка068
Рокистка068
01.02.2020
23.17
p(x)=(2х+1)(4х^2-2х+1)-8х^3=(8х^3-4x^2+2x+4x^2-2x+1)-8x^3=1
То есть при любых значениях х ответ будет всегда 1.

23.18р(х;у)=(ху+3)(2ху-4)-2(ху-7)=2*x^2*y^2-4xy+6xy-12-2xy+14=2*x^2*y^2+2
Разберем по частям 2*x^2*y^2+2
1)
2*x^2*y^2 всегда положителен, так как квадрат числа не может быть отрицательным, положительное число{2}умножаем{x^2}и умножаем на {y^2} = положительное число, всегда положителен
2)
число 2>0, положительное число 
3) сумма двух положительных чисел {2*x^2*y^2 и 2} всегда дает нам положительное число
4,7(47 оценок)
Ответ:
fkghdk
fkghdk
01.02.2020

а)

y = \dfrac{4x-15}{7+8x+x^2}

Знаменатель дроби не должен быть равен нулю. Получаем:

7+8x+x^2 \neq 0\\\\x^2 + 8x + 7 \neq 0

Чтобы это решить, для начала представим, что это выражение равно нулю, тогда получим квадратное уравнение и найдём его корни.

x^2 + 8x + 7 = 0\\\\D = b^2 - 4ac = 8^2 - 4\cdot 1\cdot 7 = 64 - 28 = 36\\\\x_{1} = \dfrac{-b+\sqrt{D}}{2a} = \dfrac{-8 + 6}{2} = \dfrac{-2}{2} = \boxed{-1}\\\\\\x_{2} = \dfrac{-b-\sqrt{D}}{2a} = \dfrac{-8 - 6}{2} = \dfrac{-14}{2} = \boxed{-7}

Но так как изначально это выражение было неравно нулю, то из области определения просто вычёркиваются корни уравнения, решённого нами выше.

ответ:  x \neq -1\ ;\ x \neq -7 .

б)

y = \sqrt{11-x^2}

Подкоренное выражение всегда неотрицательно, то есть, больше или равно нулю.

11-x^2 \geq 0\\\\(\sqrt{11} - x)(\sqrt{11} + x) \geq 0

Решим неравенство методом интервалов.

Нули: -\sqrt{11}\ ;\ \sqrt{11}

          -                            +                           -

---------------------\bullet--------------------------

                    -\sqrt{11}                         \sqrt{11}

Нам нужно найти те промежутки, где выражение больше или равно нулю. Такой промежуток только один: [-\sqrt{11}\ ;\ \sqrt{11}]  , так как там "+". Этот промежуток и будет являться областью определения функции.

ответ: x \in [-\sqrt{11}\ ;\ \sqrt{11}] .

4,5(65 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ