а) Точки, лежащие на оси Ox, имеют ординату, равную нулю. Значит, вторая координата вектора OM равна 0.
б) Точки, лежащие на оси Oy, имеют абсциссу, равную нулю. Значит, первая координата вектора OM равна 0.
в) Точки, лежащие в 1 четверти, имеют положительные абсциссу и ординату. Значит, координаты вектора OM положительны.
г) Точки, лежащие во 2 четверти, имеют отрицательную абсциссу и положительную ординату. Значит, первая координата вектора OM отрицательна, а вторая - положительна.
д) Точки, лежащие в 3 четверти, имеют отрицательные абсциссу и ординату. Значит, координаты вектора OM отрицательны.
е) Точки, лежащие в 4 четверти, имеют положительную абсциссу и отрицательную ординату. Значит, первая координата вектора OM положительна, а вторая - отрицательна.
f(x) = 1/3 x^3 - x^2 + 6
Продифференциируем функцию
f ' (x) = x^2 - 2x
Приравняем производную к нулю
x^2 - 2x = 0
x (x - 2) = 0
x = 0, или x - 2 = 0
Из вышеназванного следует, что точки экстремума - это ноль и два
Возьмём число один, для проверки знаков в следующих промежутках
(минус бесконечность ; ноль), (ноль ; два), (два ; плюс бесконечность)
f ' (1) = 1 - 2 = - 1
Значит, что в среднем промежутке будет знак минус, в боковых плюс, из чего следует, что на промежутке от минус бесконечности до нуля производная функции положительна (сама функция возрастает), на промежутке от нуля до двух производная отрицательна (функция убывает), а на промежутке от двух до плюс бесконечности производная опять становится положительной, а функция возрастает...
Точка "ноль" - точка максимума
Точка "два" - точка минимума
Фатимка, дальше я не знаю, как решать, но надеюсь, что материал вам пригодится
D=121-112=9
х1=-11+3/2=-4
х2=-11-3/2=-7
у=0 при х=-7;-4