Обозначим скорости а и b. Скорость их сближения а+b Они встретились через 30/(a+b) часов после начала. Пешеход А истратил 30/а ч. Пешеход В истратил 30/b ч. 30/a=30/(a+b)+4,5 30/b=30/(a+b)+2 Избавляемся от дробей 60(a+b)=60a+9a(a+b) 30(a+b)=30b+2b(a+b) Раскрываем скобки и упрощаем 20a+20b=20a+3a^2+3ab 15a+15b=15b+b^2+ab Упрощаем 20b=3a^2+3ab 15a=b^2+ab Из 2 уравнения a(15-b)=b^2; a=b^2/(15-b) Нетрудно подобрать такое b, чтобы а было целым. b=6; a=6^2/(15-6)=36/9=4. Подставляем в 1 уравнение 20*6=3*4^2+3*4*6 120=3*16+3*24=3*(16+24)=3*40 Все правильно. ответ: А=6; В=4
Первая парабола У=-Х²+4 имеет вершину на оси У (при Х=0 У=4) и ветви ее направлены вниз, т.к. перед Х² минус. Она симметрична оси У.
Вторая парабола У=(Х-2)² имеет вершину на оси Х (при Х=2 У=0) и ветви ее направлены вверх. Ее ось симметрии - прямая Х=2.
Чертим оси координат, отмечаем 0, точки с координатами (0;4) и (2;0), показываем ось симметрии Х=2.
Потом по клеточкам рисуем эти параболы (буквально по 2 пары точек) и видим, что пересечение двух парабол - именно в точках с координатами (0;4) и (2;0).
Общие точки на 2 параболах - при Х=0 и Х=2. Это и есть корни уравнения.