Объяснение:
б) (х² - 4х + 4) /( х -2) = 0 в) х² -81)/ (х² + 10х +9) = 0
(х - 2)² / (х - 2) = 0 ( х -9)( х +9) / ( х² +х +9х +9) =0
х - 2 = 0 ( х -9)( х +9) / [х ( x +1) +9( x + 1)} =0
х = 2 ( х -9)( х +9) / (x + 9) (x + 1) =0
ответ: х =2 ( x - 9)/(x + 1) =0
(x + 1) - знаменатель , не может быть = 0
х - 9= 0 х = 9 ответ: х =9
г) ( х + 2) / (х² -7х -18) = 0
(х + 2) / (х² +2х - 9х -18) = 0
( х + 2) / [ х( х +2) - 9(х+2) = 0
( х + 2) / (х +2) (х - 9) = 0
1 / (х - 9) = 0
ответ: решения не имеет, т.к. знаменатель не может быть = 0
д) (х² - 5х + 6) / (х² -9) = 0
( х² - 2 х - 3х + 6) / (х - 3) ( х + 3) = 0
[ (х ( х - 2) - 3( х - 2)] / (х - 3) ( х + 3) = 0
( х - 3) (х - 2) / (х - 3) ( х + 3) = 0
(х - 2) / ( х + 3) = 0
х - 2 = 0
х = 2
ответ: х = 2
ответ:1.а Раскрываем скобки.25-10х+х2 - 4-4х-х2. х2 и - х2 взаимно уничтожаются и остается -14х+21.Здесь мы может вынести за скобки общий множитель(-7). ответ:-7(2х-3).
б 3а2+4а+2-а2=2а2+4а+2.Выносим общий множитель за скобки (2). 2(а2+2а+1).Видим формулу квадрата суммы.Можно поменять.ответ:2(а+1)^2
в х2-у2 - (х-у).Видим формулу разности квадратов и знаем чему она равна и подставляем.Получаем (х-у)*(х+у)-(х-у).Здесь у нас повторяется х-у ,поэтому оно будет общим. Получаем (х-у)*(х+у-1).
3 а2+2аб+б2-с2.Видим формулу квадрата суммы. Подставляем.(а+б)^2 - с2. Все у нас в квадрате поэтому будет 2 скобки ( в первой все знаки не меняем а во второй меняем знак после скобки на противоположный)Получаем (а+б-с)*(а+б+с).
б2+а2-2аб-х2.Тоже видим формулу квадрата разности.Подставляем .(а-б)^2 -х2.Получаем (а-б-х)*(а-б+х).
Со вторым заданием разберешься сама там не сложно и все по формулам.