В решении.
Объяснение:
Дві конкуруючі фірми, працюючи одночасно, поставили в місто певну кількість товару за 4 дні. За скільки днів може виконати цей же об'єм товаропостачання кожна фірма окремо, якщо фірма, що є технічним лідером може зробити це швидше на 6 днів, ніж друга.
Две конкурирующие фирмы, работая одновременно, поставили в город определенное количество товара за 4 дня. За сколько дней может выполнить этот же объем товароснабжения каждая фирма отдельно, если фирма, которая является техническим лидером, может сделать это быстрее на 6 дней, чем другая.
х - объём товара в день первой фирмы.
у - объём товара в день второй фирмы.
1 - весь товар.
1/х - дней потребуется первой фирме.
1/у - дней потребуется второй фирме.
По условию задачи система уравнений:
(х + у) * 4 = 1
1/х - 1/у = 6
Выразить х через у в первом уравнении:
(х + у) * 4 = 1
Разделить обе части на 4 для упрощения:
х + у = 0,25
х = 0,25 - у;
Преобразовать второе уравнение.
Умножить обе части на ху, чтобы избавиться от дроби:
1/х - 1/у = 6
у - х = 6ху
Подставить в уравнение выражение х через у:
у - (0,25 - у) = 6у(0,25 - у)
у - 0,25 + у = 1,5у - 6у²
6у² - 1,5у + 2у - 0,25 = 0
6у² + 0,5у - 0,25 = 0, квадратное уравнение, ищем корни:
D=b²-4ac = 0,25 + 6 = 6,25 √D=2,5
у₁=(-b-√D)/2a
у₁=(-0,5-2,5)/12 = -3/12, отбрасываем, как отрицательный.
у₂=(-b+√D)/2a
у₂=(-0,5+2,5)/12
у₂=2/12
у₂=1/6 - объём товара в день второй фирмы.
х = 0,25 - у
х = 1/4 - 1/6
х = 1/12 - объём товара в день первой фирмы.
1 : 1/12 = 12 - дней потребуется первой фирме.
1 : 1/6 = 6 - дней потребуется второй фирме.
Разница 6 дней, верно.
В решении.
Объяснение:
С графика функции y=x² (рис. 6) найдите приближенные значения корней уравнения:
а) х²= 2;
Поскольку у=х², а х²=2, значит, нужно искать значение х при у=2.
Из точки оси Оу у=2 проводим перпендикуляр вправо, до пересечения с графиком, потом из точки пересечения опускаем перпендикуляр вниз, до оси Ох. Это и будет искомое значение х.
х ≈ 1,4;
б) х² = 7;
Здесь из точки у=7 на оси Оу проводим перпендикуляр вправо, до пересечения с графиком, потом из точки пересечения опускаем перпендикуляр вниз, до оси Ох. Это и будет искомое значение х.
х ≈ 2,6;
в) х² = 5,5
Здесь из точки у=5,5 на оси Оу проводим перпендикуляр вправо, до пересечения с графиком, потом из точки пересечения опускаем перпендикуляр вниз, до оси Ох. Это и будет искомое значение х.
х ≈ 2,3.