Пусть во второй бригаде х рабочих, тогда в первой 2х рабочих. В первой бригаде число рабочих уменьшилось на 5, значит их стало 2х-5. А во второй число рабочих уменьшилось на 2, значит их стало х-2. Так как в первой бригаде рабочих стало на 7 больше, чем во второй, то составим и решим уравнение: 2х-5-(х-2)=7 2х-5-х+2=7 х-3=7 х=7+3 х=10 значит, во второй бригаде было 10 рабочих, а стало 10-2=8 рабочих а в первой бригаде было 2*10=20 рабочих, а стало 20-5-15 рабочих. ответ: в первой бригаде стало 15 рабочих, а во второй 8 рабочих
С правой части у обоих уравнений -1, следовательно их можно приравнять. x^2+3xy-8y^2=x^2-xy-4y^2 перенесём всё влево: x^2+3xy-8y^2-x^2+xy+4y^2=0 x^2 сокращается; остаётся: 3xy+xy-8y^2+4y^2=0 4xy-4y^2=0 4y можно вынести: 4y(x-y)=0 То есть 4y=0, следовательно y=0 И x-y=0, следовательно x=y теперь подставляем эти "ответы в первое или второе уравнение (неважно) Сначала вместо y будем ставить 0: x^2+3x*0-8*0^2=-1 x^2=-1 такого быть не может (когда что-то в квадрат возносим получается положительное число) Теперь вместо y будем подставлять x (x=y) x^2+3x^2-8x^2=-1 -4x^2=-1 x^2=1/4 x1=1/2 и y1=1/2 x2=-1/2 и y2=-1/2 ответ: (1/2;1/2) и (-1/2;-1/2)