М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
тетрадка535243
тетрадка535243
06.07.2020 19:18 •  Алгебра

Теплоход проходит свой маршрут со скоростью 50 км/ч за 4,8 часа . с какой скоростью должен идти теплоход,чтобы пройти это расстояние за 3,2 часа?

👇
Ответ:
odariya
odariya
06.07.2020
Найдем расстояние, которое проходит теплоход:
50 * 4,8 = 240 км

ответим на вопрос задачи:
240 км : 3,2 часа = 75 км/ч

ответ: 75 км/ч.
4,6(60 оценок)
Ответ:
alkadraz12321
alkadraz12321
06.07.2020
4,8*50=240 (км.) 
U=240/3,2=75
4,5(31 оценок)
Открыть все ответы
Ответ:
BrainSto
BrainSto
06.07.2020
Так, так, так. У линейной функции возрастание/убывание зависит от углового коэффицента k y=kx+m : если k>0, функция возрастает, k<0 - убывает. Всё просто. Т.е. в убывании обе функции линейные, k<0 и в первом (k=-7), и во втором y=4- \frac{1}{3}x; k=- \frac{1}{3}. С этим разобрались. Теперь к возрастанию. Я не знаю, в каком Вы классе, постараюсь объяснить доступно. Чтобы определить возрастание/убывание функции, нужно взять значения x_1; x_2, два произвольных числа, но x_1\ \textless \ x_2 . Пусть мы имеем функцию y=f(x), тогда вычисляем значения функции в этих двух точках, имеем f(x_1) и f(x_2), так вот, если x_1\ \textless \ x_2; f(x_1)\ \textless \ f(x_2);, тогда функция возрастающая, если же x_1\ \textless \ x_2; f(x_1)\ \textgreater \ f(x_2), то она убывающая, но только ПРИ УСЛОВИИ, что она монотонна на всей области определения (т.е. ТОЛЬКО возрастает или ТОЛЬКО убывает), в противном случае мы говорим о ПРОМЕЖУТКАХ возрастания и убывания. 1)y=x^3+1; x_1=-2; f(x_1)=(-2)^3+1=-7; x_2=4;x_1\ \textless \ x_2 \\ f(x_2)=4^3+1=65; f(x_1)\ \textless \ f(x_2), т.е. функция возрастающая. А вот задание с y= \frac{x^2}{2} не совсем корректно, так как эта функция возрастает только при x>0, при x<0 она убывает, x=0 - Точка экстремума. Если уж брать математический анализ, то легко взять производную и исследовать функцию на "скорость изменения" (алгебраический смысл производной) y= \frac{x^2}{2}; y'= \frac{2x}{2}=x;. Если производная в некоторой точке отрицательная, то функция убывает, если производная положительная, то функция возрастает, если производная равна 0, то это точка экстремума. Очевидно, что при x<0 функция убывает, при x>0 возрастает. Если же доказывать возрастание на промежутке x>0, тогда действуем, как и в первом случае (только не берем значения из ненужного нам промежутка): x_1=1; x_2=2; x_1\ \textless \ x_2; f(x_1)= \frac{1}{2};f(x_2)=2; f(x_1)\ \textless \ f(x_2), функция возрастает, что и требовалось доказать.
4,7(58 оценок)
Ответ:
WaysWhite
WaysWhite
06.07.2020
(x^2 + x + 4)^2 + 8x(x^2 + x + 4) = - 15x^2
(x^2 + x + 4)(x^2 + x + 4 + 8x) = - 15x^2
(x^2 + x +4)(x^2 +9x + 4) = - 15x^2
x^4 + 9x^3 + 4x^2 + x^3 + 9x^2 + 4x + 4x^2 + 36x + 16 + 15x^2 = 0
x^4 + 10x^3 + 32x^2 + 40x + 16 =0
( x+ 2)^2(x^2 + 6x + 4) = 0
(x + 2)(x + 2)(x^2 + 6x + 4) = 0
x + 2 = 0
x = - 2
x  + 2 = 0
x = - 2
x^2 + 6x + 4 = 0
D = b^2 - 4ac =36 - 16 = 20
x1 = ( - 6 + 2√5) / 2 = - 2(3 - √5) / 2 = - (3 - √5) = √5 - 3
x2 = ( - 6 - 2√5) / = - 2(3 + √5)/ 2 = - (3 + √5) = - 3 - √5
ответ: x1 = √5 - 3,x2 = -√5 - 3, x3 = - 2,x4 = - 2
4,4(9 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ