Если , где - различные простые, то количество четных делителей числа n равно . Разложим 13! на простые множители: 2 встречается в множителях 2, 4, 6, 8, 10, 12, т.е. будет 2¹⁰, 3 встречается в множителях 3, 6, 9, 12, т.е. будет 3⁵, 5 встречается в множителях 5 и 10, т.е. будет 5², 7, 11, 13 встречается только в множителях 7, 11, 13 поэтому 13!=2¹⁰·3⁵·5²·7·11·13. Итак, количество четных делителей 13! равно 10·6·3·2·2·2=1440.
Обозначим скорости а и b. Скорость их сближения а+b Они встретились через 30/(a+b) часов после начала. Пешеход А истратил 30/а ч. Пешеход В истратил 30/b ч. 30/a=30/(a+b)+4,5 30/b=30/(a+b)+2 Избавляемся от дробей 60(a+b)=60a+9a(a+b) 30(a+b)=30b+2b(a+b) Раскрываем скобки и упрощаем 20a+20b=20a+3a^2+3ab 15a+15b=15b+b^2+ab Упрощаем 20b=3a^2+3ab 15a=b^2+ab Из 2 уравнения a(15-b)=b^2; a=b^2/(15-b) Нетрудно подобрать такое b, чтобы а было целым. b=6; a=6^2/(15-6)=36/9=4. Подставляем в 1 уравнение 20*6=3*4^2+3*4*6 120=3*16+3*24=3*(16+24)=3*40 Все правильно. ответ: А=6; В=4
-2 2 a<-2 log(1/6)x<-2⇒x>36 a>2 log(1/6)x>2⇒x<1/36 Так как основание логарифма меньше 1,то функция убывающая и знак неравенства меняется на противоположный.
lg(x^2+x-20) < lg(4x-2) ОДЗ х²+х-20>0 x1+x2=-1 U x1*x2=-20⇒x1=-5 U x2=4 + _ +
-5 4 x<-5 Ux>4 4x-2>0 ⇒x>1/2 x∈(4;≈)
x²+x-20<4x-2 x²-3x-18<0 x1+x2=3 U x1*x2=-18⇒x1=-3 U x2=6 + _ +
-3 6 x∈(-3;6) Совмещаем с ОДЗ⇒х∈ (4;6) На данном промежутке только одно целое решение х=5.
2 встречается в множителях 2, 4, 6, 8, 10, 12, т.е. будет 2¹⁰,
3 встречается в множителях 3, 6, 9, 12, т.е. будет 3⁵,
5 встречается в множителях 5 и 10, т.е. будет 5²,
7, 11, 13 встречается только в множителях 7, 11, 13 поэтому
13!=2¹⁰·3⁵·5²·7·11·13.
Итак, количество четных делителей 13! равно 10·6·3·2·2·2=1440.