ответ:: S6 = 10,2
Объяснение:
1. Для определения суммы шести членов арифметической прогрессии необходимо узнать значение шестого ее члена и только тогда найти S6 по формуле
Sn = (a1 + an) : 2 * n.
2. Известна формула для энного члена арифметической прогрессии
аn = a1 + d *(n - 1).
3. Пользуясь этой формулой вычислим разность прогрессии d.
a4 = a1 + d * 3;
1,8 = 1,2 + 3 d;
d = (1,8 - 1,2) : 3 = 0,6 : 3 = 0,2.
4. Теперь найдем а6.
а6 = а1 + d * 5 = 1,2 + 0,2 * 5 = 1,2 + 1 = 2,2.
5. Отвечаем на во задачи
S6 = (a1 + a6) : 2 * 6 = (1,2 + 2,2) : 2 * 6 = 10,2.
f(5π/12)=2-sin(5π/6)=2-sin(π-π/6)=2-sinπ/6=2-1/2=1,5
2
(3x-2)/(x²-x-2)≥0
3x-2=0⇒x=2/3
x²-x-2=0
x1+x2=1 U x1*x2=-2⇒x1=-1 U x2=2
_ + _ +
(-1)[2/3](2)
x∈(-1;2/3] U (2;∞)-это если все стоит под корнем
если только 3х-2 под корнем,то х∈[2/3;3) U (3;∞)
3
E(y)∈-2-1/2*[-1;1]=-2-[-1/2;1/2]=[-2,5;-1,5]
4
а)F(x)= sin^2x/x^2-1
F(-x)=sin²(-2x)/((-x)²-1)=sin²2x/(x²-1)
F(x)=F(-x) четная
b)F(x) = x^4+1/2x^3
F(-x)=(-x)^4+1/2*(-x)³=x^4-1/2*x³ ни четная,ни нечетная
5
y=5tgx/3
T=π/k k=1/3⇒T=π:1/3=3π
6
y=-2cosx+1
Строим у=-сosx
Растягиваем по оси оу в 2 раза
Сдвигаем ось ох на 1 вниз
E(y)∈[-1;3]