Пусть первое число равно х, тогда второе число равно 400-х, т.к. сумма чисел, по условию, равна 400. Примем каждое из чисел, которые будем искать за 100%. По условию, первое число уменьшили на 20%, значит, осталось 100%-20%=80% от первого числа (от х) Второе число уменьшили на 15%, т.е. осталось 100%-15%=85% от второго числа (от 400-х). Для удобства вычислений, переведём проценты в десятичные дроби: 80%=80:100=0,8 85%=85:100=0,85 По условию, когда оба числа уменьшили, то их сумма также уменьшилась на 68. Т.е. она теперь стала равна 400-68=332 Осталось записать уравнение для решения задачи: 0,8х+0,85(400-х)=332 Заметим, что произведения 0,8х - это и есть 80% от числа х 0,85(400-х) - это 85% от числа 400-х Решаем уравнение: 0,8x+0,85*400-0,85x=332 -0,05x+340=332 -0,05x=332-340 -0,05x=-8 x= -8:(-0,05) x=160 - первое число 400-х=400-160=240 - второе число
Уравнение прямой на плоскости имеет в общем случае (когда прямая не параллельна ни одной из координатных осей) вид ax+by+c=0, где x и y - координаты любой точки, принадлежащей прямой. 1) При a=0 уравнение прямой принимает вид by+c=0, или y=-c/b. Это значит, что все точки нашей прямой имеют одинаковую ординату y=-c/b, а это означает, что прямая параллельна прямой Ox. 2) При b=0 уравнение принимает вид ax+c=0, или x=-c/a. Это значит, что все точки прямой имеют одинаковую абсциссу x=-c/a, т.е. прямая параллельна оси Oy. По условию, a=5, c=5, и уравнение принимает вид x=-5/5=-1. ответ: уравнение прямой есть х=-1
арифм.прогрессия
a1=3; a2=7; a3=11;a4=15
d=4
по формуле суммы первых n-членов арифмюпрогрессии
S=((2*a1+(n-1)*d)/2)*n=((2*3+(5-1)*4)/2)*5=55
n=5,т.к. надо найти сумму первых пяти членов