У = -3(x -2)² + 20 ; График функции у = x² парабола; вершина в начале координат O(0;0) , ветви направлены вверх ↑ (по положительному направлению оси у). а) построить график функции у =3x² (при одинаковой x ординат у которой в три раза больше чем ординат функции у = x² ( график "сжимается" к оси у ). б) перевернуть (построить симметричный относительно оси x) полученный график функции у = 3x² ; получится график функции у = - 3x² . в) перемещением графики функции у = - 3x² направо (→) на 2 единиц и вверх(↑) на 20 единиц получается график функции у = -3(x -2)² + 20 Вершина параболы из точки O(0;0) перемещается в точку G(2 ;20) . Еще нужно построить характерные точки графики B(0 ;8)_точка пересечения с осью у (всегда существует) и точки(точка) пересечения с осью абсцисс (корни трехчлена): A(6- 2√15)/3 ;0) и A(6+ 2√15)/3 l0).
Пусть первое число равно х, тогда второе число равно 400-х, т.к. сумма чисел, по условию, равна 400. Примем каждое из чисел, которые будем искать за 100%. По условию, первое число уменьшили на 20%, значит, осталось 100%-20%=80% от первого числа (от х) Второе число уменьшили на 15%, т.е. осталось 100%-15%=85% от второго числа (от 400-х). Для удобства вычислений, переведём проценты в десятичные дроби: 80%=80:100=0,8 85%=85:100=0,85 По условию, когда оба числа уменьшили, то их сумма также уменьшилась на 68. Т.е. она теперь стала равна 400-68=332 Осталось записать уравнение для решения задачи: 0,8х+0,85(400-х)=332 Заметим, что произведения 0,8х - это и есть 80% от числа х 0,85(400-х) - это 85% от числа 400-х Решаем уравнение: 0,8x+0,85*400-0,85x=332 -0,05x+340=332 -0,05x=332-340 -0,05x=-8 x= -8:(-0,05) x=160 - первое число 400-х=400-160=240 - второе число
=((a-2x)^2) /x^2-(a^2+2ax+4x^2)/x^2=(a^2-4ax+4x^2-a^2-2ax-4x^2)/x^2=
(-6ax/x^2=-6a/x