М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Лера100223
Лера100223
18.07.2020 22:38 •  Алгебра

Срешением (метод подстановки) 1) у=-8 2х+0.5у=1 2) -х-4у=-5 2х+7у=8

👇
Ответ:
2x+0,5*(-8)=1
2x-4=1
2x=1+4
2x=5:2
x=2,5
y=-8
#2
-4y=-5+x:(-4)
y=1,25-0,25x
2x+7*(1,25-0,25x)=8
2x+8,75-1,75x=8
0,25x=8-8,75
0,25x=-0,75:0,25
x=-3
-(-3)-4y=-5
3-4y=-5
-4y=-5-3
-4y=-8:(-4)
x=2
4,5(54 оценок)
Открыть все ответы
Ответ:
ашпшплщ
ашпшплщ
18.07.2020
Пусть у вас есть две дроби: 2/3 и 7/8. Сначала найдем наименьшее общее делимое знаменателей данных дробей, а затем приведем обе дроби к нему. В нашем случае наименьшим общим делимым является число 24, вот к нему и будем приводить дроби. 

Чтобы привести первую дробь к найденному наименьшему общего делимому, умножим числитель первой дроби на частное от деления этого делителя на числитель. В нашем случае это будет: 24/3=8. То есть числитель первой дроби необходимо умножить на 8. Аналогичным образом находим множитель для второй дроби: 24/8=3. То есть числитель второй дроби необходимо умножить на 3. 

Умножаем числители дробей на полученные частные. В результате дроби получат общий знаменатель: 16/24 и 21/24.
4,6(50 оценок)
Ответ:
Доказательство методом математической индукции
База индукции. При n=1 утверждение справедливо.
Действительно 1^2=\frac{n(n+1)(2n+1)}{6}

Гипотеза индукции. Пусть утверждение выполняется для некоторого натурального n=k, т.е. верно равенство
1^2+2^2+3^2+...+k^2=\frac{k(k+1)(2k+1)}{6}

Индукционный переход. Докажем что тогда утверждение справедливо при n=k+1, т.е. что справедливо равенство
1^2+2^2+3^2+..+k^2+(k+1)^2=\frac{(k+1)((k+1)+1)(2(k+1)+1)}{6}
или переписав правую сторону равенства, предварительно упростив
1^2+2^2+3^2+...+k^2+(k+1)^2=\frac{(k+1)(k+2)(2k+3)}{6}

1^2+2^2+3^2+...+k^2+(k+1)^2=
используем гипотезу
\frac{k(k+1)(2k+1)}{6}+(k+1)^2=\\\\(k+1)(\frac{k(2k+1)}{6}+(k+1)}=\\\\(k+1)(\frac{2k^2+k+6k+6}{6}=\\\\\frac{(k+1)(2k^2+7k+6)}{6}=\\\\\frac{(k+1)(2k^2+4k+3k+6)}{6}=\\\\\frac{(k+1)((2k^2+4k)+(3k+6))}{6}=\\\\\frac{(k+1)(2k(k+2)+3(k+2)}{6}=\\\\\frac{(k+1)(k+2)(2k+3)}{6}

Согласно принципу математической индукции данное утверждение справедливо для любого натурального n. Доказано
4,7(97 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ