М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Foxxx11
Foxxx11
20.02.2020 01:27 •  Алгебра

Выражение: 1)(a-2)(a-1)-a(a+1) 2)(b-5)(b+10)+(b+6)(b-8) 3)(2c+3)(3c++7)(2c-7) 4)(3d+5)(5d--3)(2-8d)

👇
Ответ:
vladik883763
vladik883763
20.02.2020

Объяснение:

1)

(a-2)(a-1) - a(a-1)= a^{2} -a-2a+2 -a^{2} -a=-4a+2;

2)

(b-5)(b+10)+(b+6)(b-8)=b^{2} +10b-5b-50+b^{2} -8b+6b-48=\\2b^{2} +3b-98;

3)

(2c+3)(3c+2) -(2c+7)(2c-7) =6c^{2} +4c+9c+6-4c^{2} +49=2c^{2} +13c+55;

4)

(3d+5)(5d-1)-(6d-3)(2-8d)= 15d^{2} -3d+25d-5-12d+48d^{2} +6-24d=\\63d^{2} -14d+1.

4,4(8 оценок)
Открыть все ответы
Ответ:
Limon2601
Limon2601
20.02.2020
Решение.
Находим первую производную функции:
y' = (x-4)² * (2*x-2)+(x-1)² * (2*x-8)
или
y' = 2(x-4)(x-1)(2*x-5)
Приравниваем ее к нулю:
2(x-4)(x-1)(2*x-5) = 0
x₁ = 1
x₂ = 5/2
x₃ = 4
Вычисляем значения функции 
f(1) = 0
f(5/2) = 81/16
f(4) = 0
ответ: fmin = 0; fmax = 81/16
Используем достаточное условие экстремума функции одной переменной. Найдем вторую производную:
y'' = 2(x-4)²+2(x-1)²+2(2*x-8)(2*x-2)
или
y'' = 12*x ²- 60*x + 66
Вычисляем:
y''(1) = 18>0 - значит точка x = 1 точка минимума функции.
y''(4) = 18>0 - значит точка x = 4 точка минимума функции.
4,5(53 оценок)
Ответ:
Пакмен007
Пакмен007
20.02.2020

Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.

1-ое свойство, которое понадобится

a+c \equiv b + d \ (mod \ m)

То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.

2-ое свойство, которое нам понадобится:

ac \equiv bd \ (mod \ m)

То есть довольно аналогичная вещь в произведении

На нашем примере все увидим

a = 5\cdot 2^{51}+21\cdot 32^{45}

Находим остатки по модулю 31

Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например, 16 \equiv (-1) \ (mod \ 17), но сейчас это не нужно), нам повезло, это 32

Учитываем, что 32 \equiv 1 \ (mod \ 31), получаем

5\cdot 2^{51} = 5\cdot 2^1 \cdot 2^{50}=10 \cdot 2^{10\cdot 5} = 10 \cdot (2^{5})^{10}= 10\cdot 32^{10} \equiv 10 \cdot 1^{10} \ (mod \ 31)

То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым

21\cdot 32^{45} \equiv 21 \cdot 1^{45}\ (mod \ 31) \equiv 21 \ (mod \ 31)

Остаток 21, чудесно. Выполняем последний шаг.

5\cdot 2^{51}+21\cdot 32^{45} \equiv 10+21 \ (mod \ 31) \equiv 31 \ (mod \ 31) \equiv 0 \ (mod \ 31)

То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.

4,6(78 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ