C-точка встречи AC=x CB=280-x T1=1ч30мин=3/2 ч Т2=2ч40мин=2 +40/60=2 2/3=8/3 S=VT V=S/T V1=(280-x)/3/2=2(280-x)/3 V2=x/8/3=3x/8 и заметим что до встречи они проехали одинаковое время AC/V1=CB/V2 x : 2(280-x)/3 = (280-x) : 3x/8 3x/2(280-x)=8(280-x)/3x 9x²=16(280-x)² так как все везде положительное то не будем делвть сложных возведений в степень ( хотите сделайте) а вместо этого возьмем корень слева справа 3x=4(280-x) 3x=4*280-4x 7x=4*4*70 x=160 встретились на расстояние от А V2=3*160.8=60 км ч V1=2*120/3=80 км ч T=280/(60+80)=2 часа
Немного нетривиальная задача Немного повозится надо ПЕрвое что они ехали одно и тоже время до встречи и аккуратно расписать все скорости и времена
1)sinА^2+cosA^2= 1 Тогда cos(A) =√ 1-sinA^2= √1( 2/7)^2=√1-4/49=√45/49=√45/7=√9*√5/7=3√5/7 Вычислим тангенс, зная, что тангенсом острого угла называется отношение синуса угла к его косинусу. tg (A) =2/7 : 3√5/7=2*7/3√5*7=2/3√5 ctgA=cosa/sina=3√5/7/2/7=3√5/2 2)a) (sina+cos)^2+(sina-cosa)^2= =sin^2a+2sinacosa+cos^a+sin^2a-2sinacosa+cosa= =2sin^2a+2cos^2a=2 б) cos²α- cos⁴α+sin⁴α=cos²α(1- cos²α)+sin⁴α=cos²α·sin²α+sin⁴α
( sin²α=1-cos²α)
=sin²α(cos²α+sin²α)=
(sin²α+cos²α= 1)
=sin²α В) 1-cos^2a/1-sin^2a=sin^2a/cos^2a=tga 3)sin>0 cos<0 tg,ctg<0 750=2*360+30-1 2 полных оборота и поворот на 30 градусов 1 четверть в ней sin,cos,tg,ctg>0
Так как 9 и 49 выйдут из под корня
Останется под корни 3*7
Равно 21 корень из 21ого