Если две величины связаны между собой так, что с увеличением (уменьшением) значения одной из них в несколько раз значение другой увеличивается (уменьшается) во столько же раз, то такие величины называются прямо пропорциональными.
О таких величинах говорят также, что они связаны между собой прямо пропорциональной зависимостью.
В природе и в окружающей нас жизни встречается множество подобных величин. Приведём примеры:
1. Время работы (день, два дня, три дня и т. д. ) и заработок, полученный за это время при подённой оплате труда.
2. Объём какого-нибудь предмета, сделанного из однородного материала, и вес этого предмета.
Пусть скорость второго лыжника будет х км/ч, тогда скорость первого лыжника, будет х-2 км/ч (т.к. его скорость была на 2 км/ч меньше, чем у второго). Время, за которое первый лыжник преодолел расстояние в 40 км будет: 40/(х-2)=t Второй лыжник потратил столько же времени, сколько и первый, только преодолел 48 км, его время будет: 48/х=t
Т.к. время первого и второго лыжников равны, получаем уравнение: t=40/(х-2)=48/х
Решаем это уравнение относительно х: 40 = 48 х-2 х
40*х=48*(х-2) 40х=48х-48*2 40х=48х-96 48х-40х=96 8х=96 х=96:8 х=12 км/ч - скорость второго лыжника.
Скорость первого лыжника на 2 км/ч меньше, чем у второго, т.е.: 12-2=10 км/ч - скорость первого лыжника.
ax+c=bx+d a) x=7 5x+5=3x+19 Проверка: 5*7+5=3*7+19 35=35 (верно) б) Уравнение не имеет корней: 3х+7=3х-2 т.е. левая часть уравнения не должна равняться правой его части. Проверка: 3х+7=3х-2 3х-3х=-7-2 0х=-9 0≠-9 в) Уравнение имеет бесконечное множество решений. В этом случае коэффициенты при переменной х и свободные члены должны быть равны, соответственно. Пример: 8х+6=8х+6 или 34х-5=34х-5
О таких величинах говорят также, что они связаны между собой прямо пропорциональной зависимостью.
В природе и в окружающей нас жизни встречается множество подобных величин. Приведём примеры:
1. Время работы (день, два дня, три дня и т. д. ) и заработок, полученный за это время при подённой оплате труда.
2. Объём какого-нибудь предмета, сделанного из однородного материала, и вес этого предмета.